
FADML Scribe 

Week - 06  

11-15 Feb 2025 

 

 

Intractable Problem: 

There are 3 ways to solve intractable problem: 

1) Efficient search (Combinatorial OpƟmizaƟon) – This approach explores the soluƟon 
space by using techniques like branch and bound, dynamic programming or heurisƟc 
search to prune unnecessary computaƟons. This methods tries to improve efficiency 
by avoiding exhausƟve brute-force searches.  
 

2) SubopƟmal SoluƟon (ApproximaƟon) – When finding the exact soluƟon is infeasible 
computaƟonally, algorithms provide near opƟmal soluƟon within a guaranteed error 
bound. It uses technique like Greedy algorithms. As finding the exact opƟmal 
soluƟon is infeasible, we trade accuracy for efficiency. The soluƟon is not necessarily 
opƟmal, but it comes with a performance guarantee.  
 
 

3) Almost correct soluƟon (RandomizaƟon) – It introduces probabilisƟc techniques to 
find a soluƟon that is likely correct or close to opƟmal. They do not necessarily 
compromise the soluƟon's quality but introduce probabilisƟc elements, meaning the 
soluƟon may be correct with high probability.  
 

 Time complexity is minimized in efficient search 
 OpƟmality is played with in subopƟmal soluƟons 
 Quality is usually not compromised in randomizaƟon, but correctness or runƟme may 

vary probabilisƟcally. 

 

 

 

 

 

 

 



Travelling Salesman Problem: (Euclidean TSP) 

Complete tour from start city to all other ciƟes such that each city is visited only once and 
return back to start city at minimum cost. 

  

SoluƟon: 
 Find a minimum spanning tree using Kruskal’s algorithm. And then return back to 

starƟng vertex.  
 Minimum spanning tree for the given graph is A -> B -> C -> E -> D (3 + 2 + 1 + 1 = 7) 
 The best possible cost of traveling salesman tour is never less than the cost of MST 

because aŌer visiƟng every vertex, the salesman has to return to the origin. 
L* > MST (G) 

Suppose, for other graph as shown below, we may need to travel from M to K using 
backtrack. So, number of back edges can be at maximum number of total edges.  

 
Assume that the distance between K to L is x, L to M is y and M to K is z. Then, for the 
Euclidean travelling salesman problem saƟsfying the in equality z < x + y, algorithm 
can’t give worst soluƟon than 2 * MST (G).  

2 * MST(G) < Lsol < L* < MST(G) 



Where, Lsol is soluƟon of the algorithm, L* is the best soluƟon and MST(G) 
represents minimum spanning tree of a graph.  
 

 For Euclidean TSP, PTAS (Polynomial-Time approximaƟon scheme) exists and for non-
Euclidean TSP, PTAS doesn’t exist. 
 

Hamiltonian cycle reducƟon to Non Euclidean TSP 
 

Hamiltonian cycle problem: 

 Given an input instance of an undirected graph and problem is to find a path that 
visits every vertex in the graph exactly once and ends at the same vertex it began 
with.  
Steps: 
1) Assign weight 1 to all the edges 
2) Produce all the other edges that doesn’t exists and assign it a weight infinity. 
3) If polynomial Ɵme soluƟon exists for Non Euclidean TSP, then 

i) If there is a tour of length inf or 
ii) If there is a tour of length < inf 

4) If the minimum cost of the tour is inf, then the Hamiltonian cycle doesn’t exist 
and if the minimum cost of the tour is < inf, then the Hamiltonian cycle exists. 
 

 So, if the Hamiltonian cycle is NP-complete, this reducƟon implies that Non-Euclidean 
TSP is at least as hard as the Hamiltonian cycle.  

 

Combinatorial OpƟmizaƟon (Trying all combinaƟons) 

 

SoluƟon: Start with vertex A and try all possible combinaƟons. And use pruning when path 
of parƟcular path is already more than minimum cost obtained Ɵll that point. 



 

Here, first A -> B -> C -> D -> E -> A path is explored according to DFS and total cost is 20. 

Then, second A -> B -> C -> E -> D -> A path is taken for which total cost is 13. 

Then, while exploring the path A -> B -> D -> C, total cost encountered is 12 and there are 
sƟll 2 nodes to visit and so the total cost can’t be less than 13. So, this branch is not explored 
further. 

Same way pruning is applied aŌer considering all the combinaƟons, (i.e. A -> C and A -> E are 
not explored as it can’t give less than 13 cost soluƟon and there are other pruned branches 
as well) 

 

A* algorithm (Best-First Search) 

 In this algorithm, heurisƟc values for reaching to the goal is also included in the graph 
which helps in pruning more branches quickly. 

 FuncƟon used for A* algorithm is: f(n) = g(n) + h(n), where g(n) = cost from start node 
to node n, h(n) is heurisƟc cost from n to goal and f(n) is total esƟmated cost of the 
path through n 

 HeurisƟc values are determined based on domain knowledge. 
 A* algorithm works best when heurisƟc value h(n) never overesƟmates and as close 

as possible to actual cost. In that case, we might not need to explore extra nodes and 
hence computaƟon will not increase. 

 If h(n) overesƟmates the actual cost, as A* is kind of greedy algorithm, we potenƟally 
skip beƩer paths at earlier stages and hence need to explore all combinaƟons. 

 The best you can under approximate, the more branches you can prone. 

 

 



Hill Climbing Algorithm 

 In this algorithm, we start with an iniƟal path which is random iniƟalizaƟon. 
 And then generate neighbouring paths by making small changes (Swapping two 

ciƟes) and evaluate the cost of each neighbouring path. Based on the cost, we move 
the best neighbour. 

 And stopping criteria is also set like if there is not improvement in the last 3 
iteraƟons, then we stop. (Local minima is reached) 

 

 For this graph, we iniƟalize random soluƟon A B C D E and then come back to A. Total 
cost for the path is 20. In the next iteraƟon, we change posiƟon of nodes and check if 
any improvement is made.  
IniƟalizaƟon: A B C D E (20) 
IteraƟon 1: A B E D C  (20)  
IteraƟon 2: A B D E C (19) and so on. 

Problems in Hill climbing: 

1) Local Minima – The algorithm may stuck in subopƟmal soluƟon and can’t find beƩer 
global soluƟon as no neighbout is beƩer. In this case, random restarts could help in 
overcoming the problem. 

2) Plateau – A flat region where all neighbouring soluƟons have same value and hence 
no progress can be made. In this case, random jumps can help. 

 Hill climb problem uses similar technique like stochasƟc gradient descent. 

Simulated Annealing 

 Unlike hill climbing, in simulated annealing move towards worst soluƟon is accepted 

occasionally with probability P = 𝐴 = 𝑒
ష

 . IniƟally, there are more shakes or 
fluctuaƟons in the soluƟon which helps in jumping out of deep but subopƟmal 
valleys (Local Minima) but it gradually decreases and couldn’t climb the mountain.  
 



Tic-Tac-Toe 

 It is a 2 player game played on 3 X 3 grid where player take turns marking X or O. And 
the goal is to finish row, column or a diagonal with three of the same symbol.  

 The game can be solved using Minimax algorithm, where one player (X) tries to 
maximize his score and at the same Ɵme, opponent (O) is trying to minimize X’s 
score. 

 OpƟmizaƟon for Minimax algorithm is Alpha-Beta pruning which pruns unnecessary 
branches of the game tree. Where, alpha is best score maximizer can guarantee and 
beta is best score, minimizer guarantees. And if at any node, alpha > beta, then it is 
not eplored further as opponent will never allowed to reach this state.  

 Alpha-Beta Pruning is an optimization for the Minimax Algorithm that prunes 
unnecessary branches of the game tree, reducing computation. Alpha (α) represents 
the best score the maximizer can guarantee, while Beta (β) represents the best score 
the minimizer can guarantee. If at any node, α ≥ β, further exploration is stopped 
because the opponent will never allow reaching this state. 

Genetic Algorithm 

 Genetic Algorithm is an optimization technique inspired by natural selection. The key 
steps are selection, crossover and mutation. 

 Crossover (Recombination): It is a process where two parent solutions combine to 
create offspring. By acquiring characteristics from both parents, it facilitates the 
exploration of new areas of the solution space. 

 Mutation: It prevents early convergence and preserves variety by introducing 
random changes in offspring. It facilitates genetic algorithm’s exploration of novel 
solutions and escape from local optima. 

 

Longest Palindromic Subsequence 

Problem:  

Given a string S, find the length of the longest subsequence that is a palindrome. 

Input:  

A string of length n where 1 ≤ n ≤ 1000 and string contains lowercase leƩers only. 

Output:  

Integer represenƟng the length of the LPS. 

Example 1:  

Input : “bbbab” => Output : 4 (“bbbb”) 

Example 2:  



Input – S = “cbbd” => Output – 2 (“bb”) 

SoluƟon 

Using Top down memoizaƟon by slightly modifying longest common subsequence 
memoizaƟon soluƟon. This algorithm maintains dp table to store intermediate results to 
avoid reduandant calculaƟons. If the first and last characters match, then LPS is extended by 
2 plus the remaining substring. Otherwise, it takes the maximum LPS by excluding either 
end.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table for the string “bbbab” 

Base case  

dp[i][i] = 1 # IniƟalize all diagonal elements to 1 

Length 2 subsequence: 

dp[0][1] = 2 (“bb”, s[0] == s[1], so 2 + LPS(“”) = 2) 

dp[1][2] = 2 (“bb”, s[1] == s[2], so 2 + LPS(“”) = 2) 

dp[2][3] = 1 (“ba”, s[2] != s[3], max(LPS(“b”), LPS(“b”) = 1) 

dp[3][4] = 1 (“ab”, s[3] != s[4], max(LPS(“a”), LPS(“b”) = 1) 

Length 3 subsequences: 

dp[0][2] = 3 (“bbb”, s[0] == s[2], so 2 + LPS(“b”) = 3) 

dp[1][3] = 2 (“bba”, s[1] != s[3], so max(LPS(“bb”), LPS(“ba”))= 2) 

n <- len(s) 

Create memoizaƟon table dp[n][n] and iniƟalize all 
elements to -1 

LPS(S): 

# Base case 

If i > j: (Invalid range) 

 Return 0 

If i == j: (Only one character – filling diagonal elements) 

 Return 1 

If dp [i][j] != -1 (Already computed) 

 Return dp [i][j] 

If s[i] == s[j]: 

 dp[i][j] <- 2 + LPS(i + 1, j – 1) 

Else: 

 dp[i][j] <- max (LPS[i + 1, j), LPS(i, j-1)) 

Return dp[i][j] 

 



dp[2][4] = 3 (“bab”, s[2] == s[4], so 2 + LPS(“a”) = 3) 

Length 4 subsequences: 

dp[0][3] = 3 (“bbba”, max(LPS(“bbb”), LPS(“bba”)) = 3) 

dp[1][4] = 3 (“bbab”, max(LPS(“bba”), LPS(“bab”)) = 3) 

Length 5 subsequences: 

dp[0][4] = 4 (“bbbab”, 2 + LPS(“bba”) = 4) 

 j 0 1 2 3 4 
i  b b b a b 

0 b 1 2 3 3 4 
1 b - 1 2 2 3 
2 b - - 1 1 3 
3 a - - - 1 1 
4 b - - - - 1 

 

Time Complexity: 

There are O(𝑛ଶ) subproblems as n X n DP table is filled. And each subproblem is taking O(1) 
Ɵme. Hence, the Ɵme complexity is O(𝑛ଶ) 

AlternaƟve SoluƟon: 

Reverse the given string S and then find the length of longest common subsequence (Using 
memoizaƟon table) between original and reversed string. In this case, reversing the string 
will take O(n) Ɵme and finding longest common subsequence will take O(𝑛ଶ) Ɵme. Hence, 
total Ɵme complexity of the problem will be O(𝑛ଶ). 

Closest Pair Problem (2-D) 

Input:  

Set of n points in 2D [(x1, y1), (x2, y2), (x3, y3), …] 

Output:  

Find the closest pair [(xi, yi), (xj, yj)] 

Brute – Force soluƟon:  

Calculate distance between each pair and find the smallest out of that. Which is O(𝑛ଶ). 

Divide and Conquer Approach O(n 𝒍𝒐𝒈𝟐𝒏): 

1) Find the middle point in the sorted array based on x coordinate and divide the array 
in two halves. 

2) Find the closest pair in the leŌ subarray. And calculate the minimum distance 
between 2 points as dl. 



3) Find the closest pair in the right subarray. And calculate the minimum distance 
between 2 points as dr. And d = min(dl, dr) 

 
4) Check if there exists a pair such that one point is on the leŌ and the other point is on 

the right and the distance between them is) less than d. For this follow the below 
steps: 
 Consider the verƟcal line passing through middle point and get all points whose x 

coordinates are closer than d to the middle verƟcal line. Build an array window 
for all these points. 

 Sort all these points according to y coordinates.  
 Find the smallest distance among these points. It takes O(𝑛ଶ) Ɵme for large n but 

it is geometrically proven, that at most 7 points are needed to be checked for 
every point in the strip. Hence it is O(n) and not O(𝑛ଶ).  

 Return the minimum from the minimum distance calculated using strip and d.  

 

 

 

 



Why 7 points and not more? 

 Consider a strip, its width is 2d (Where, d is the minimum distance between leŌ and 
right halves) 

 And then points are sorted by y-coordinates.  
 So, in 2d X d box, if there are 8 or more points, at least two of them must be closer 

than d, which contradicts the earlier assumpƟon that d is the minimum distance. 
Hence, only 7 points can be packed while maintaining a distance of at least d apart. 

Time Complexity: 

T(n) = 2 T(n/2) + O(n) + O(n log n) + O(n) 

T(n) = 2 T(n/2) + O(n log n) 

T(n) = O(n 𝑙𝑜𝑔ଶ𝑛) 

 


