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MIN-MAX SEARCH: 
In adversarial two-player games like chess or tic-tac-toe, the challenge isn’t just solving the 

problem—it’s also countering an opponent who is actively working against you. This is a common 

scenario in AI, where you must navigate a situation with an adversary. The goal is to find the best 

strategy to win by exploring all possible moves and outcomes. 

 

Example:  Tic-Tac-Toe 

• You are Player X, and your opponent is Player O. 

• When it’s your turn, you make a move, and your opponent responds. 

• You must think ahead: If I move here, where will my opponent move next? 

• Evaluate all possible moves your opponent could make and determine the best response. 

 

Scenario: 

1. You place an X in a spot. 

2. Your opponent, O, can respond by placing their mark in one of several available spots. 

3. You evaluate each possibility and choose the move that maximizes your chances of winning. 

 

The Minimax Algorithm: 

The Minimax algorithm is a key strategy in AI for solving two-player games. It helps decide the best 

move by considering both your goals and your opponent’s goals. It assumes your opponent will 

always play optimally to minimize your chances of winning. 

 

Game Tree: 

 

 
 



Key Concepts: 

1. Two Players with Opposite Goals: 

o Player 1 (Maximizer): Aims to maximize their chances of winning. 

o Player 2 (Minimizer): Aims to minimize Player 1’s chances (or maximize their own). 

2. Alternating Moves: 

o On your turn, choose the move with the best outcome. 

o On your opponent’s turn, they choose the move that’s worst for you (or best for them). 

3. Recursive Search: 

o The algorithm explores all possible moves and counter-moves, alternating between 

maximizing and minimizing at each level of the game tree. 

o It continues until it reaches a terminal state (win, lose, or draw). 

4. Scoring: 

o In zero-sum games (e.g., tic-tac-toe, chess), outcomes are represented as scores: 

▪ +1: You win. 

▪ -1: Your opponent wins. 

▪ 0: It’s a draw. 

o The algorithm calculates the best move by assuming your opponent will always play 

optimally to minimize your score. 

 

Why Minimax is Useful: 

• It systematically explores all possible moves and counter-moves. 

• It prepares you for the worst-case scenario by assuming your opponent plays optimally. 

• It’s widely used in AI for games like chess, checkers, and tic-tac-toe. 

 
Simplified game tree: 

 
 

This tree has 11 nodes. The full game tree has large number of nodes.  

In a more complex game, such as chess, it's hard to search whole game tree. However, Alpha–beta 

Pruning is an optimization method to the minimax algorithm that allows us to disregard some 

branches in the search tree, because it cuts irrelevant nodes (subtrees) in search. 

 

SEARCH APPROACH BASED ON PERTURBING: 
 

Alternative to the iterative approach which we used for solving TSP, we can also find the solution for 

a problem in the following way: 



1. Starting with an initial solution. 

2. Perturbing (modifying) the solution in a constructive manner to explore new possibilities. 

3. Evaluating the new solutions and repeating the process. 

 

For example, in the Traveling Salesman Problem (TSP), you might start with a route like A → B → C 

→ D → E → B. A perturbation could involve swapping two nodes (e.g., swapping B and C) to create a 

new route: A → C → B → D → E → B. The goal is to iteratively improve the solution by reducing the 

total cost. 

 

However, if you want to stop in a feasible limit, the challenge is deciding when to stop the search. 

One approach is to monitor the cost: 

• If the cost stops decreasing (or starts increasing) after several iterations, you can freeze the 

solution. 

 

Local Optima: 

 

In optimization problems, a common issue of using the above perturbing-based search approach is 

getting stuck in local optima—solutions that are better than nearby solutions but not the best 

overall.  

To address this: 

 

1. Randomize the starting point:  You can use cross-validation or stochastic methods to explore 

multiple starting points and avoid getting stuck in local optima. By trying different initial solutions, 

you increase the chances of finding a better global solution. 

This process is like stochastic gradient descent in machine learning, where randomization and 

iterative improvement are key to finding optimal solutions. In minimization problems, gradient 

descent helps iteratively move toward the best solution by following the steepest decrease in cost. 

In maximization problems, the opposite approach (called gradient ascent / hill climbing) is used. 

 

2. Simulated Annealing: It is a technique inspired by the physical process of annealing in metallurgy, 

where a material is heated and slowly cooled to reduce defects and improve its structure. 

 

The Shake Analogy: 

Imagine you’re trying to climb a rugged terrain to find the lowest point (the global 

minimum). Initially, you might get stuck in a small valley (local minimum). To escape, you 

shake the system with high energy, allowing it to jump out of the valley and explore other 

areas. Gradually, you reduce the intensity of the shaking (energy) to stabilize and settle into 

the lowest possible point. 

a) High Initial Energy: 

• At the start, you apply a lot of energy (shaking) to explore the search space broadly and 

avoid getting trapped in local optima. 

• This is analogous to heating a material to a high temperature, allowing atoms to move 

freely. 

b) Gradual Reduction in Energy: 



• Over time, you reduce the shaking (energy) to allow the system to settle into a stable, 

low-energy state. 

• This mimics the cooling process in annealing, where the material slowly solidifies into a 

more ordered structure. 

 

Why Reduce Energy Over Time? 

1. Exploration vs. Exploitation: 

   - High initial energy allows for exploration of the search space, helping to escape local 

optima. 

   - Reduced energy over time focuses on exploitation, refining the solution and stabilizing 

around the global optimum. 

2. Avoiding Overshooting: 

   - If the energy remains high, the system might keep jumping around and fail to settle into a 

stable solution. 

   - Gradually reducing the energy ensures the system converges to the best possible solution 

 

Mathematical Representation: 

The energy reduction in simulated annealing is often modelled using the Boltzmann 

distribution, where the energy decreases exponentially over time: 

 
This exponential decay ensures that the system explores widely at the beginning and fine-

tunes its search as it progresses. 

 

GENETIC ALGORITHMS: 
 

Genetic Algorithms (GA) are a powerful optimization technique inspired by natural selection and 

evolution. They evolve a population of candidate solutions over multiple generations to find an 

optimal or near-optimal solution. 

 

Solving the Traveling Salesman Problem (TSP) Using Genetic Algorithm (GA) 

 

1. Introduction to TSP and Genetic Algorithm 

The Traveling Salesman Problem (TSP) is an optimization problem where a salesman must visit a set 

of cities exactly once and return to the starting city while minimizing the travel distance. Since the 

problem is NP-hard, finding the exact solution for large datasets is computationally expensive. 

A Genetic Algorithm (GA) is a heuristic search method inspired by natural selection and evolution. It 

is useful for solving optimization problems like TSP by iteratively improving solutions through 

selection, crossover, and mutation. 



 

2. Representation of TSP in GA 

• Genes: Each city is represented as a gene. 

• Chromosome (Solution Candidate): A valid tour (permutation of cities) represents a 

chromosome. 

• Population: A group of chromosomes representing multiple potential solutions. 

• Fitness Function: The total path length of a chromosome (route). Lower distance = higher 

fitness. 

 

3. Genetic Algorithm for TSP 

Step 1: Initialization (Creating Initial Population) 

• Generate a population of N random routes (chromosomes). 

• Each route is a random permutation of cities. 

• Example for 5 cities: 

Route 1: [A → C → E → B → D → A]   

Route 2: [B → A → E → D → C → B]   

 

Step 2: Calculate Fitness 

• The fitness function calculates the total distance of a route. 

• Formula: F=1/Total Distance 

o A shorter distance gives a higher fitness value. 

• Example: 

Route 1: A → C → E → B → D → A, Distance = 120 km 

Route 2: B → A → E → D → C → B, Distance = 140 km 

o Fitness of Route 1 = 1/120 = 0.0083 

o Fitness of Route 2 = 1/140 = 0.0071 

o Route 1 is fitter than Route 2. 

 

Step 3: Selection (Choosing Parents) 

• Select two fittest chromosomes as parents using methods like: 

o Roulette Wheel Selection (probability-based). 

o Tournament Selection (best from a subset). 

o Rank Selection (higher-ranked individuals have a higher probability). 

 

Step 4: Crossover (Recombining Parents) 

• Combine two parent routes to generate a new child route. 

• Example: Using Order Crossover (OX): 

Parent 1: A → B → C → D → E 

Parent 2: E → D → C → B → A 

Crossover at two points: 

o Copy B → C → D from Parent 1. 

o Fill remaining cities from Parent 2: 

▪ Child Route: E → B → C → D → A 

 

Step 5: Mutation (Introduce Variations) 



• Swap two random cities to avoid local optima. 

• Example: 

o Before Mutation: E → B → C → D → A 

o Swap B and D → E → D → C → B → A 

 

Step 6: Repeat Until Stopping Condition 

• Repeat steps 2 to 5 for a number of generations or until a threshold distance is reached. 

• Cooling Mechanism: A variable controlling the number of iterations to prevent unnecessary 

computations. 

 

GAs are widely used for optimization problems, such as TSP, scheduling, machine learning, and AI-

based problem-solving 

 

When to Apply Genetic Algorithms: 

 

They work well in problems where solutions can be decomposed into sub-problems, solved 

independently, and then stitched together to form a complete solution. 

 

Key Conditions for Applying Genetic Algorithms 

1. Problem Decomposition: 

   - The problem should be divisible into smaller, solvable sub-problems. 

   - Example: In combinatorial optimization, you can break down a large problem into smaller 

components, solve them, and combine the results. 

 

2. Stitching Solutions: 

   - GA relies on crossover and mutation to combine and modify partial solutions. 

   - Example: In the Traveling Salesman Problem (TSP), you can combine segments of different routes 

to create a new, potentially better route. 

 

Mostly, Combinatorial optimization relies primarily on these methods - Heuristic search, Game 

search (Min Max search), Simulated Annealing and Genetic Algorithms. 


