
Fundamentals of Algorithm Design and Machine Learning

NP:
How do we know that a problem is NP (Nondeterministic Polynomial time)?

For a given problem, if a proposed solution can be verified in polynomial time O(nk) (for some constant k), then
the problem is in NP.

Example: Hamiltonian Cycle Problem

Given a graph G, does there exist a cycle that visits each vertex exactly once and returns to the starting point?

If a proposed cycle is given, we can check its validity in O(n2) time. Thus, the Hamiltonian Cycle problem is
in NP.

NP-complete (NPC):
How do we know that a problem is NP-complete (NPC)?

A problem is NP-complete (NPC) if it satisfies both of the following conditions:

1. It is in NP → A proposed solution can be verified in polynomial time.
2. It is NP-hard → Any problem in NP can be reduced to it in polynomial time.

Exist a problem q ∈	NPC,	q ≤P PNEW

q ≤P PNEW is used to show NP-hardness: If an NP-complete problem reduces to PNEW , then PNEW is at least as
hard as any NP problem.

Example: SAT Problem

The SAT problem is a decision problem where we are given a Boolean formula, and we must determine if
there is a way to assign truth values to the variables such that the formula evaluates to True. It is NP-complete,
meaning it is computationally difficult to solve but easy to verify a solution. The formula is in Conjunctive
Normal Form (CNF), which is a conjunction (AND) of clauses, where each clause is a disjunction (OR) of
literals (variables or their negations).

• Variables: These are the Boolean variables that can take values True or False (e.g., x1, x2, x3).
• Literals: A literal is either a variable or its negation (e.g., x1or ¬x1).
• Clauses: A clause is a disjunction (OR) of literals. For example, (x1∨¬x2∨x3) is a clause.
• Formula: A formula is a conjunction (AND) of clauses.

For example, (x1 ∨	¬x2 ∨	x3) ∧	(¬x1 ∨	x2) ∧	(x2 ∨	¬x3) is a Boolean formula.
For the formula above, one valid assignment could be:

• x1=TRUE
• x2=TRUE
• x3=FALSE

This assignment makes all three clauses true, so the formula is satisfiable.

K-SAT Problem:

In the K-SAT problem, each clause in the Boolean formula has exactly K literals (variables or their negations),
where K can be any positive integer. The task is to determine if there is a way to assign truth values to the
variables such that the entire formula is satisfied (i.e., evaluates to True).

Example of 2-SAT:

For the 2-SAT problem, the formula would look like this:

(x1 ∨	¬x2) ∧	(x2 ∨	x3) ∧	(¬x1 ∨	x3)

Each clause contains exactly two literals.

For 4-SAT, a formula might look like this:

(x1 ∨	x2 ∨	¬x3 ∨	x4) ∧	(x2 ∨	¬x4 ∨	x3 ∨	¬x1)

Each clause contains exactly four literals.

To establish that the 3-SAT problem can be solved using the K-clique problem, we need to show a reduction
from the 3-SAT problem to the K-clique problem. Specifically, we need to demonstrate that any instance of
the 3-SAT problem can be transformed into an instance of the K-clique problem, and the solution to the K-
clique problem will give us a solution to the 3-SAT problem.

Step-by-Step Explanation:

1. The 3-SAT Problem:

We are given a 3-SAT formula with a set of clauses, each containing exactly 3 literals (variables or their
negations). The goal is to determine if there is a truth assignment to the variables that makes the formula true.

The 3-SAT formula is in Conjunctive Normal Form (CNF), which means the formula is a conjunction (AND)
of clauses, where each clause is a disjunction (OR) of 3 literals.

For example, a 3-SAT formula might look like this:

(x1 ∨	¬x2 ∨	x3) ∧	(¬x1 ∨	x2 ∨	x3) ∧	(¬x1 ∨	¬x2 ∨	x3)

• Every clause should be 1, that means at least one variable in a clause should be 1

2. The K-Clique Problem:

The K-clique problem is a graph-based problem where we are given a graph G and an integer K. The task is to
determine whether there is a clique (a subset of vertices) of size K in the graph, i.e., a set of K vertices such that
every pair of vertices in the set is connected by an edge.

3. Reduction from 3-SAT to K-Clique:

To reduce the 3-SAT problem to the K-clique problem, we will transform the 3-SAT formula into a graph such
that finding a K-clique in this graph corresponds to solving the 3-SAT problem.

Construction of the Graph:

1. Variables and Literals:
• For each literal in the 3-SAT formula, we will create a corresponding vertex in the graph. Each

literal xi or ¬xi in the formula will be represented by a vertex in the graph.
2. Graph Construction:

• For each clause in the 3-SAT formula, we will create a triangle (a set of 3 vertices fully
connected) in the graph, one for each of the literals in that clause. These vertices will
correspond to the literals in the clause.

• We need to ensure that the literals in the same clause are connected to each other (forming a
clique of size 3 for that clause).

• Incompatibility: We need to ensure that incompatible literals (such as xi and ¬xi) are not
included in the same clique. Therefore, we will not create edges between vertices that represent
incompatible literals.

3. Clique Size K:
• The size of the clique we are looking for is equal to the number of clauses in the 3-SAT

formula. Each clause will contribute one vertex to the clique, and the clique will consist of one
vertex from each clause (representing a true literal in that clause).

4. Edges:
• Connect the vertices in the graph such that:

§ Vertices representing compatible literals (from different clauses) are connected by an
edge.

§ Vertices representing incompatible literals (such as xi and ¬xi) are not connected.

4. Why This Works:

• A K-clique in this graph corresponds to a truth assignment in the 3-SAT formula:
• If a vertex corresponding to a literal xi is included in the clique, then the literal xi is True.
• If a vertex corresponding to a literal ¬xi is included, then xi is False.
• For a clique to exist, every clause in the formula must be satisfied, which means at least one

literal in each clause must be True.

Thus, finding a K-clique in this graph corresponds to finding a satisfying assignment for the 3-SAT formula,
which proves that 3-SAT can be solved using the K-clique problem.

