Fundamentals of Algorithm Design and Machine Learning

NP:
How do we know that a problem is NP (Nondeterministic Polynomial time)?

For a given problem, if a proposed solution can be verified in polynomial time O(n¥) (for some constant k), then
the problem is in NP.

Example: Hamiltonian Cycle Problem
Given a graph G, does there exist a cycle that visits each vertex exactly once and returns to the starting point?

If a proposed cycle is given, we can check its validity in O(n?) time. Thus, the Hamiltonian Cycle problem is
in NP.

NP-complete (NPC):
How do we know that a problem is NP-complete (NPC)?

A problem is NP-complete (NPC) if it satisfies both of the following conditions:

1. Itisin NP — A proposed solution can be verified in polynomial time.
2. Itis NP-hard — Any problem in NP can be reduced to it in polynomial time.

Exist a problem q € NPC, q <p PNEW

q <p PNEW is used to show NP-hardness: If an NP-complete problem reduces to PNEW | then PNEV is at least as
hard as any NP problem.

Example: SAT Problem

The SAT problem is a decision problem where we are given a Boolean formula, and we must determine if
there is a way to assign truth values to the variables such that the formula evaluates to True. It is NP-complete,
meaning it is computationally difficult to solve but easy to verify a solution. The formula is in Conjunctive
Normal Form (CNF), which is a conjunction (AND) of clauses, where each clause is a disjunction (OR) of
literals (variables or their negations).

Variables: These are the Boolean variables that can take values True or False (e.g., x1, x2, x3 ).
Literals: A literal is either a variable or its negation (e.g., x1or —x1).

Clauses: A clause is a disjunction (OR) of literals. For example, (x1V—x2Vx3) is a clause.
Formula: A formula is a conjunction (AND) of clauses.

For example, (x1 V —x2 V x3) A (—x1 V x2) A (x2 V —x3) is a Boolean formula.
For the formula above, one valid assignment could be:

o xI=TRUE
o x2=TRUE
o x3=FALSE

This assignment makes all three clauses true, so the formula is satisfiable.



K-SAT Problem:

In the K-SAT problem, each clause in the Boolean formula has exactly K literals (variables or their negations),
where K can be any positive integer. The task is to determine if there is a way to assign truth values to the
variables such that the entire formula is satisfied (i.e., evaluates to True).

Example of 2-SAT:

For the 2-SAT problem, the formula would look like this:

(x1Vv—=x2)A(x2Vx3)A(—x]Vx3)

Each clause contains exactly two literals.

For 4-SAT, a formula might look like this:

(x1vx2Vv—=x3Vx4)Ax2V—x4Vx3V—xl)

Each clause contains exactly four literals.

To establish that the 3-SAT problem can be solved using the K-clique problem, we need to show a reduction
from the 3-SAT problem to the K-clique problem. Specifically, we need to demonstrate that any instance of
the 3-SAT problem can be transformed into an instance of the K-clique problem, and the solution to the K-
clique problem will give us a solution to the 3-SAT problem.

Step-by-Step Explanation:

1. The 3-SAT Problem:

We are given a 3-SAT formula with a set of clauses, each containing exactly 3 literals (variables or their
negations). The goal is to determine if there is a truth assignment to the variables that makes the formula true.

The 3-SAT formula is in Conjunctive Normal Form (CNF), which means the formula is a conjunction (AND)
of clauses, where each clause is a disjunction (OR) of 3 literals.

For example, a 3-SAT formula might look like this:
(x1V—=x2Vx3)A(—x1 Vx2Vx3)A(~x]lV—x2Vx3)
e Every clause should be 1, that means at least one variable in a clause should be 1
2. The K-Clique Problem:
The K-clique problem is a graph-based problem where we are given a graph G and an integer K. The task is to
determine whether there is a clique (a subset of vertices) of size K in the graph, i.e., a set of K vertices such that

every pair of vertices in the set is connected by an edge.

3. Reduction from 3-SAT to K-Clique:



To reduce the 3-SAT problem to the K-clique problem, we will transform the 3-SAT formula into a graph such
that finding a K-clique in this graph corresponds to solving the 3-SAT problem.

Construction of the Graph:

1. Variables and Literals:

e For each literal in the 3-SAT formula, we will create a corresponding vertex in the graph. Each

literal xi or —xi in the formula will be represented by a vertex in the graph.
2. Graph Construction:

e For each clause in the 3-SAT formula, we will create a triangle (a set of 3 vertices fully
connected) in the graph, one for each of the literals in that clause. These vertices will
correspond to the literals in the clause.

e We need to ensure that the literals in the same clause are connected to each other (forming a
clique of size 3 for that clause).

e Incompatibility: We need to ensure that incompatible literals (such as xi and —xi) are not
included in the same clique. Therefore, we will not create edges between vertices that represent
incompatible literals.

3. Clique Size K:

e The size of the clique we are looking for is equal to the number of clauses in the 3-SAT
formula. Each clause will contribute one vertex to the clique, and the clique will consist of one
vertex from each clause (representing a true literal in that clause).

4. Edges:
e Connect the vertices in the graph such that:
= Vertices representing compatible literals (from different clauses) are connected by an
edge.
= Vertices representing incompatible literals (such as xi and —xi) are not connected.

4. Why This Works:

e A K-clique in this graph corresponds to a truth assignment in the 3-SAT formula:
e Ifa vertex corresponding to a literal xi is included in the clique, then the literal xi is True.
e Ifa vertex corresponding to a literal —xi is included, then xi is False.
e For a clique to exist, every clause in the formula must be satisfied, which means at least one
literal in each clause must be True.

Thus, finding a K-clique in this graph corresponds to finding a satisfying assignment for the 3-SAT formula,
which proves that 3-SAT can be solved using the K-clique problem.



