
Fundamentals of Algorithm Design and Machine Learning 
 
NP: 
How do we know that a problem is NP (Nondeterministic Polynomial time)? 
 
For a given problem, if a proposed solution can be verified in polynomial time O(nk) (for some constant k), then 
the problem is in NP. 
 
Example: Hamiltonian Cycle Problem 
 
Given a graph G, does there exist a cycle that visits each vertex exactly once and returns to the starting point? 
 
If a proposed cycle is given, we can check its validity in O(n2) time. Thus, the Hamiltonian Cycle problem is 
in NP. 
 
NP-complete (NPC): 
How do we know that a problem is NP-complete (NPC)? 

A problem is NP-complete (NPC) if it satisfies both of the following conditions: 

1. It is in NP → A proposed solution can be verified in polynomial time. 
2. It is NP-hard → Any problem in NP can be reduced to it in polynomial time. 

Exist a problem q ∈	NPC,	q ≤P PNEW 

q ≤P PNEW is used to show NP-hardness: If an NP-complete problem reduces to PNEW , then PNEW is at least as 
hard as any NP problem. 

Example: SAT Problem 
 
The SAT problem is a decision problem where we are given a Boolean formula, and we must determine if 
there is a way to assign truth values to the variables such that the formula evaluates to True. It is NP-complete, 
meaning it is computationally difficult to solve but easy to verify a solution. The formula is in Conjunctive 
Normal Form (CNF), which is a conjunction (AND) of clauses, where each clause is a disjunction (OR) of 
literals (variables or their negations). 
 
•  Variables: These are the Boolean variables that can take values True or False (e.g., x1, x2, x3 ). 
•  Literals: A literal is either a variable or its negation (e.g., x1or ¬x1). 
•  Clauses: A clause is a disjunction (OR) of literals. For example, (x1∨¬x2∨x3) is a clause. 
•  Formula: A formula is a conjunction (AND) of clauses.  
 
For example, (x1 ∨	¬x2 ∨	x3) ∧	(¬x1 ∨	x2) ∧	(x2 ∨	¬x3) is a Boolean formula. 
For the formula above, one valid assignment could be: 

• x1=TRUE 
• x2=TRUE 
• x3=FALSE 

This assignment makes all three clauses true, so the formula is satisfiable. 

 



 

K-SAT Problem: 

In the K-SAT problem, each clause in the Boolean formula has exactly K literals (variables or their negations), 
where K can be any positive integer. The task is to determine if there is a way to assign truth values to the 
variables such that the entire formula is satisfied (i.e., evaluates to True). 

Example of 2-SAT: 

For the 2-SAT problem, the formula would look like this: 

(x1 ∨	¬x2) ∧	(x2 ∨	x3) ∧	(¬x1 ∨	x3) 

Each clause contains exactly two literals. 

For 4-SAT, a formula might look like this: 

(x1 ∨	x2 ∨	¬x3 ∨	x4) ∧	(x2 ∨	¬x4 ∨	x3 ∨	¬x1) 

Each clause contains exactly four literals. 

To establish that the 3-SAT problem can be solved using the K-clique problem, we need to show a reduction 
from the 3-SAT problem to the K-clique problem. Specifically, we need to demonstrate that any instance of 
the 3-SAT problem can be transformed into an instance of the K-clique problem, and the solution to the K-
clique problem will give us a solution to the 3-SAT problem. 

Step-by-Step Explanation: 

1. The 3-SAT Problem: 

We are given a 3-SAT formula with a set of clauses, each containing exactly 3 literals (variables or their 
negations). The goal is to determine if there is a truth assignment to the variables that makes the formula true. 

The 3-SAT formula is in Conjunctive Normal Form (CNF), which means the formula is a conjunction (AND) 
of clauses, where each clause is a disjunction (OR) of 3 literals. 

For example, a 3-SAT formula might look like this: 

(x1 ∨	¬x2 ∨	x3) ∧	(¬x1 ∨	x2 ∨	x3) ∧	(¬x1 ∨	¬x2 ∨	x3) 
 

• Every clause should be 1, that means at least one variable in a clause should be 1 

2. The K-Clique Problem: 

The K-clique problem is a graph-based problem where we are given a graph G and an integer K. The task is to 
determine whether there is a clique (a subset of vertices) of size K in the graph, i.e., a set of K vertices such that 
every pair of vertices in the set is connected by an edge. 

3. Reduction from 3-SAT to K-Clique: 



To reduce the 3-SAT problem to the K-clique problem, we will transform the 3-SAT formula into a graph such 
that finding a K-clique in this graph corresponds to solving the 3-SAT problem. 

Construction of the Graph: 

1. Variables and Literals: 
• For each literal in the 3-SAT formula, we will create a corresponding vertex in the graph. Each 

literal xi or ¬xi in the formula will be represented by a vertex in the graph. 
2. Graph Construction: 

• For each clause in the 3-SAT formula, we will create a triangle (a set of 3 vertices fully 
connected) in the graph, one for each of the literals in that clause. These vertices will 
correspond to the literals in the clause. 

• We need to ensure that the literals in the same clause are connected to each other (forming a 
clique of size 3 for that clause). 

• Incompatibility: We need to ensure that incompatible literals (such as xi and ¬xi) are not 
included in the same clique. Therefore, we will not create edges between vertices that represent 
incompatible literals. 

3. Clique Size K: 
• The size of the clique we are looking for is equal to the number of clauses in the 3-SAT 

formula. Each clause will contribute one vertex to the clique, and the clique will consist of one 
vertex from each clause (representing a true literal in that clause). 

4. Edges: 
• Connect the vertices in the graph such that: 

§ Vertices representing compatible literals (from different clauses) are connected by an 
edge. 

§ Vertices representing incompatible literals (such as xi and ¬xi) are not connected. 

4. Why This Works: 

• A K-clique in this graph corresponds to a truth assignment in the 3-SAT formula: 
• If a vertex corresponding to a literal xi is included in the clique, then the literal xi is True. 
• If a vertex corresponding to a literal ¬xi is included, then xi is False. 
• For a clique to exist, every clause in the formula must be satisfied, which means at least one 

literal in each clause must be True. 

Thus, finding a K-clique in this graph corresponds to finding a satisfying assignment for the 3-SAT formula, 
which proves that 3-SAT can be solved using the K-clique problem. 

 

 

 
 
 

 

 

 


