
Foundations of Algorithm Design and Machine Learning

Name: Kshitish Raj Date : 06-02-2025

Roll No. : 24BM6JP25 Lecture Slot: 8:00 hrs to 9:00 hrs

Revision

 EXP

Basic Complexity Class Relations

 P ⊂ NP ∩ Co-NP → Problems solvable in polynomial time are a subset of both NP

and Co-NP.

 NPC ⊂ NP → NP-Complete (NPC) problems are a subset of NP.

 If NP ⊆ P (Unknown Case) → Two possibilities:

1. P = NP → Polynomial-time solvability implies verifiability.

2. P ≠ NP → Some problems in NP cannot be solved in polynomial time.

Definitions

 P = Q → Problem Q can be solved in O(n^k) time.

 NP = Q → Problem Q's solution can be verified in O(n^k) time.

 Co-NP = Q → Complement of Q belongs to NP.

NP-Completeness (NPC)

A problem is NP-Complete if:

1. It belongs to NP.

2. All problems in NP can be polynomial-time reducible to it.

P NP Co-NP

NPC

Reduction Concept

 Reduction (≤p): If a known NP-Complete (NPC) problem can be polynomially

reduced to a new problem, then the new problem is at least as hard as the known

NPC problem.

 Notation: Known NPC Problem ≤p New Problem

Problems in P (Solvable in polynomial time): Shortest Path

Problems in NP (Solution can be verified in polynomial time): Longest Path

Reduction Chain of NP-Complete Problems

1. SAT ∈ NPC

2. SAT ≤p 3-SAT (Reduction from SAT to 3-SAT)

3. 3-SAT ≤p K-Clique (Reduction from 3-SAT to K-Clique)

4. 3-SAT ≤p Hamiltonian Cycle (Reduction from 3-SAT to Hamiltonian Cycle)

1. Reduction from SAT to 3-SAT:

To reduce the SAT problem to the 3-SAT problem, we will transform a given Boolean

formula in conjunctive normal form (CNF) into an equivalent 3-SAT formula, ensuring that

each clause contains exactly three literals.

Construction of the 3-SAT Formula:

 1. Handling Clauses with Three or Fewer Literals:

 If a clause already contains exactly three literals, it remains unchanged.

 If a clause contains fewer than three literals, we introduce new dummy variables to

extend it to three literals.

Examples:

o A clause with one literal, e.g., (x1), is transformed into (x1 ∨ y ∨ ¬y), where y is a new
variable.

o A clause with one literal, e.g., (x1 ∨ x2), is transformed into (x1 ∨ y ∨ ¬y), where y is a
new variable.

o A clause with two literals, e.g., (x1∨x2), is transformed into (x1 ∨ x2 ∨ y), where y is a
new variable.

 2. Handling Clauses with More Than Three Literals:

 If a clause contains more than three literals, we break it into multiple clauses, each

containing exactly three literals, by introducing new auxiliary variables.

Example:

o Consider the clause (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5),
o We introduce new variables y1 and y2 and split the clause as follows:

 (x1 ∨ x2 ∨ y1)
 (¬y1 ∨ x3 ∨ y2)
 (¬y2 ∨ x4 ∨ x5)

This transformation ensures that each new clause has exactly three literals while

preserving the logical equivalence of the original formula.

 3. Why This Works:

 The transformation preserves satisfiability:
o If the original SAT formula is satisfiable, there exists an assignment of truth values

that satisfies each clause. The introduced variables do not affect the truth
assignment.

o If the transformed 3-SAT formula is satisfiable, then the original formula is also
satisfiable, as the newly introduced variables ensure logical consistency.

 Since this transformation is polynomial in size, it establishes that SAT reduces to 3-SAT in
polynomial time.

Thus, this reduction proves that 3-SAT is at least as hard as SAT, demonstrating the

equivalence of the two problems in terms of computational complexity.

2. Reduction from 3-SAT to K-Clique

Goal:

Transform a 3-SAT formula into a graph such that finding a K-Clique in the graph

corresponds to solving the 3-SAT problem.

Graph Construction

1. Vertices (Variables and Literals)
o Each literal (e.g., xi or ¬xi) in the 3-SAT formula is represented as a vertex in the

graph.

2. Clause Representation (Triangles)
o For each clause (l1 ∨ l2 ∨ l3), create a triangle (fully connected set of three vertices)

in the graph.
o Each triangle contains the three literals in that clause.

3. Edges (Connecting Compatible Literals)
o Edges are added between vertices that belong to different clauses if they are

compatible (i.e., they do not contradict each other).
o Incompatibility Condition: If two vertices represent complementary literals (e.g., xi

and ¬xi), they are not connected.

K-Clique Formation

 The clique size (K) is equal to the number of clauses in the 3-SAT formula.
 A K-Clique in this graph represents a truth assignment that satisfies all clauses.

Why This Works

 If a K-Clique exists, it must contain one vertex from each clause, meaning that each clause
has at least one true literal.

 If a literal is in the clique, its complementary literal cannot be included, ensuring a valid
truth assignment.

Reduction Chain

 3-SAT ≤p K-Clique → Finding a K-Clique in the constructed graph is equivalent to solving the
3-SAT problem.

Reduction from 3-SAT to Hamiltonian Cycle

The goal is to transform a 3-SAT formula into a directed graph such that finding a

Hamiltonian cycle in this graph corresponds to solving the 3-SAT problem.

Graph Construction

1. Vertices (Literals and Clauses Representation)
o Each literal (xi or ¬xi) in the 3-SAT formula is represented as a vertex in the

graph.

o Each clause (l1 ∨ l2 ∨ l3) is represented as a group of three vertices

corresponding to its literals.

o A start vertex (S) and an end vertex (T) are introduced to guide traversal.

2. Edges (Ensuring Logical Flow and Compatibility)

o Within Each Clause:
 The three literals of a clause are arranged in a cycle (ensuring at least

one literal per clause is selected).

o Between Clauses:
 Directed edges connect compatible literals (i.e., those that do not

contradict each other) across different clauses.

o Avoiding Contradictions:
 If a literal xi is chosen, then its negation ¬xi should not be reachable.

o Start and End Connections:
 The start vertex (S) is connected to one literal from the first clause.

 The end vertex (T) is connected to one literal from the last clause.

Hamiltonian Cycle Formation

 A Hamiltonian cycle in this graph must pass through one literal from each clause,

ensuring that at least one literal per clause is selected.

 The cycle must return to the start vertex without contradictions, implying a valid

truth assignment.

Why This Works

 If a Hamiltonian cycle exists, it must include one vertex from each clause and

avoid contradictions.

 This ensures that there is a truth assignment satisfying the 3-SAT formula.

Reduction Chain

 3-SAT ≤p Hamiltonian Cycle → Finding a Hamiltonian cycle in the constructed

graph is equivalent to solving the 3-SAT problem.

