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Basic Complexity Class Relations 

 P ⊂ NP ∩ Co-NP → Problems solvable in polynomial time are a subset of both NP 

and Co-NP. 

 NPC ⊂ NP → NP-Complete (NPC) problems are a subset of NP. 

 If NP ⊆ P (Unknown Case) → Two possibilities:  

1. P = NP → Polynomial-time solvability implies verifiability. 

2. P ≠ NP → Some problems in NP cannot be solved in polynomial time. 

Definitions 

 P = Q → Problem Q can be solved in O(n^k) time. 

 NP = Q → Problem Q's solution can be verified in O(n^k) time. 

 Co-NP = Q → Complement of Q belongs to NP. 

 

NP-Completeness (NPC) 

A problem is NP-Complete if: 

1. It belongs to NP. 

2. All problems in NP can be polynomial-time reducible to it. 

P NP Co-NP 
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Reduction Concept 

 Reduction (≤p): If a known NP-Complete (NPC) problem can be polynomially 

reduced to a new problem, then the new problem is at least as hard as the known 

NPC problem. 

 Notation: Known NPC Problem ≤p New Problem 

 

Problems in P (Solvable in polynomial time): Shortest Path 

Problems in NP (Solution can be verified in polynomial time): Longest Path 

Reduction Chain of NP-Complete Problems 

1. SAT ∈ NPC 

2. SAT ≤p 3-SAT (Reduction from SAT to 3-SAT) 

3. 3-SAT ≤p K-Clique (Reduction from 3-SAT to K-Clique) 

4. 3-SAT ≤p Hamiltonian Cycle (Reduction from 3-SAT to Hamiltonian Cycle) 

1. Reduction from SAT to 3-SAT: 

To reduce the SAT problem to the 3-SAT problem, we will transform a given Boolean 

formula in conjunctive normal form (CNF) into an equivalent 3-SAT formula, ensuring that 

each clause contains exactly three literals. 

Construction of the 3-SAT Formula: 

       1. Handling Clauses with Three or Fewer Literals: 

 If a clause already contains exactly three literals, it remains unchanged. 

 If a clause contains fewer than three literals, we introduce new dummy variables to 

extend it to three literals. 

Examples: 

o A clause with one literal, e.g., (x1), is transformed into (x1 ∨ y ∨ ¬y), where y is a new 
variable. 

o A clause with one literal, e.g., (x1 ∨ x2), is transformed into (x1 ∨ y ∨ ¬y), where y is a 
new variable. 

o A clause with two literals, e.g., (x1∨x2), is transformed into (x1 ∨ x2 ∨ y), where y is a 
new variable. 

        2. Handling Clauses with More Than Three Literals: 

 If a clause contains more than three literals, we break it into multiple clauses, each 

containing exactly three literals, by introducing new auxiliary variables. 

Example: 



o Consider the clause (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5), 
o We introduce new variables y1 and y2 and split the clause as follows:  

 (x1 ∨ x2 ∨ y1) 
 (¬y1 ∨ x3 ∨ y2) 
 (¬y2 ∨ x4 ∨ x5) 

This transformation ensures that each new clause has exactly three literals while 

preserving the logical equivalence of the original formula. 

 3. Why This Works: 

 The transformation preserves satisfiability:  
o If the original SAT formula is satisfiable, there exists an assignment of truth values 

that satisfies each clause. The introduced variables do not affect the truth 
assignment. 

o If the transformed 3-SAT formula is satisfiable, then the original formula is also 
satisfiable, as the newly introduced variables ensure logical consistency. 

 Since this transformation is polynomial in size, it establishes that SAT reduces to 3-SAT in 
polynomial time. 

Thus, this reduction proves that 3-SAT is at least as hard as SAT, demonstrating the 

equivalence of the two problems in terms of computational complexity. 

 

2. Reduction from 3-SAT to K-Clique 

Goal: 

Transform a 3-SAT formula into a graph such that finding a K-Clique in the graph 

corresponds to solving the 3-SAT problem. 

 

Graph Construction 

1. Vertices (Variables and Literals) 
o Each literal (e.g., xi or ¬xi) in the 3-SAT formula is represented as a vertex in the 

graph. 

2. Clause Representation (Triangles) 
o For each clause (l1 ∨ l2 ∨ l3), create a triangle (fully connected set of three vertices) 

in the graph. 
o Each triangle contains the three literals in that clause. 

3. Edges (Connecting Compatible Literals) 
o Edges are added between vertices that belong to different clauses if they are 

compatible (i.e., they do not contradict each other). 
o Incompatibility Condition: If two vertices represent complementary literals (e.g., xi 

and ¬xi), they are not connected. 

 



K-Clique Formation 

 The clique size (K) is equal to the number of clauses in the 3-SAT formula. 
 A K-Clique in this graph represents a truth assignment that satisfies all clauses. 

Why This Works 

 If a K-Clique exists, it must contain one vertex from each clause, meaning that each clause 
has at least one true literal. 

 If a literal is in the clique, its complementary literal cannot be included, ensuring a valid 
truth assignment. 

Reduction Chain 

 3-SAT ≤p K-Clique → Finding a K-Clique in the constructed graph is equivalent to solving the 
3-SAT problem. 

 

Reduction from 3-SAT to Hamiltonian Cycle 

The goal is to transform a 3-SAT formula into a directed graph such that finding a 

Hamiltonian cycle in this graph corresponds to solving the 3-SAT problem. 

Graph Construction 

1. Vertices (Literals and Clauses Representation) 
o Each literal (xi or ¬xi) in the 3-SAT formula is represented as a vertex in the 

graph. 

o Each clause (l1 ∨ l2 ∨ l3) is represented as a group of three vertices 

corresponding to its literals. 

o A start vertex (S) and an end vertex (T) are introduced to guide traversal. 

2. Edges (Ensuring Logical Flow and Compatibility) 

o Within Each Clause:  
 The three literals of a clause are arranged in a cycle (ensuring at least 

one literal per clause is selected). 

o Between Clauses:  
 Directed edges connect compatible literals (i.e., those that do not 

contradict each other) across different clauses. 

o Avoiding Contradictions:  
 If a literal xi is chosen, then its negation ¬xi should not be reachable. 

o Start and End Connections:  
 The start vertex (S) is connected to one literal from the first clause. 

 The end vertex (T) is connected to one literal from the last clause. 

Hamiltonian Cycle Formation 

 A Hamiltonian cycle in this graph must pass through one literal from each clause, 

ensuring that at least one literal per clause is selected. 



 The cycle must return to the start vertex without contradictions, implying a valid 

truth assignment. 

Why This Works 

 If a Hamiltonian cycle exists, it must include one vertex from each clause and 

avoid contradictions. 

 This ensures that there is a truth assignment satisfying the 3-SAT formula. 

Reduction Chain 

 3-SAT ≤p Hamiltonian Cycle → Finding a Hamiltonian cycle in the constructed 

graph is equivalent to solving the 3-SAT problem. 

 

 

 


