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Basic Complexity Class Relations 

 P ⊂ NP ∩ Co-NP → Problems solvable in polynomial time are a subset of both NP 

and Co-NP. 

 NPC ⊂ NP → NP-Complete (NPC) problems are a subset of NP. 

 If NP ⊆ P (Unknown Case) → Two possibilities:  

1. P = NP → Polynomial-time solvability implies verifiability. 

2. P ≠ NP → Some problems in NP cannot be solved in polynomial time. 

Definitions 

 P = Q → Problem Q can be solved in O(n^k) time. 

 NP = Q → Problem Q's solution can be verified in O(n^k) time. 

 Co-NP = Q → Complement of Q belongs to NP. 

 

NP-Completeness (NPC) 

A problem is NP-Complete if: 

1. It belongs to NP. 

2. All problems in NP can be polynomial-time reducible to it. 

P NP Co-NP 

NPC 



Reduction Concept 

 Reduction (≤p): If a known NP-Complete (NPC) problem can be polynomially 

reduced to a new problem, then the new problem is at least as hard as the known 

NPC problem. 

 Notation: Known NPC Problem ≤p New Problem 

 

Problems in P (Solvable in polynomial time): Shortest Path 

Problems in NP (Solution can be verified in polynomial time): Longest Path 

Reduction Chain of NP-Complete Problems 

1. SAT ∈ NPC 

2. SAT ≤p 3-SAT (Reduction from SAT to 3-SAT) 

3. 3-SAT ≤p K-Clique (Reduction from 3-SAT to K-Clique) 

4. 3-SAT ≤p Hamiltonian Cycle (Reduction from 3-SAT to Hamiltonian Cycle) 

1. Reduction from SAT to 3-SAT: 

To reduce the SAT problem to the 3-SAT problem, we will transform a given Boolean 

formula in conjunctive normal form (CNF) into an equivalent 3-SAT formula, ensuring that 

each clause contains exactly three literals. 

Construction of the 3-SAT Formula: 

       1. Handling Clauses with Three or Fewer Literals: 

 If a clause already contains exactly three literals, it remains unchanged. 

 If a clause contains fewer than three literals, we introduce new dummy variables to 

extend it to three literals. 

Examples: 

o A clause with one literal, e.g., (x1), is transformed into (x1 ∨ y ∨ ¬y), where y is a new 
variable. 

o A clause with one literal, e.g., (x1 ∨ x2), is transformed into (x1 ∨ y ∨ ¬y), where y is a 
new variable. 

o A clause with two literals, e.g., (x1∨x2), is transformed into (x1 ∨ x2 ∨ y), where y is a 
new variable. 

        2. Handling Clauses with More Than Three Literals: 

 If a clause contains more than three literals, we break it into multiple clauses, each 

containing exactly three literals, by introducing new auxiliary variables. 

Example: 



o Consider the clause (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5), 
o We introduce new variables y1 and y2 and split the clause as follows:  

 (x1 ∨ x2 ∨ y1) 
 (¬y1 ∨ x3 ∨ y2) 
 (¬y2 ∨ x4 ∨ x5) 

This transformation ensures that each new clause has exactly three literals while 

preserving the logical equivalence of the original formula. 

 3. Why This Works: 

 The transformation preserves satisfiability:  
o If the original SAT formula is satisfiable, there exists an assignment of truth values 

that satisfies each clause. The introduced variables do not affect the truth 
assignment. 

o If the transformed 3-SAT formula is satisfiable, then the original formula is also 
satisfiable, as the newly introduced variables ensure logical consistency. 

 Since this transformation is polynomial in size, it establishes that SAT reduces to 3-SAT in 
polynomial time. 

Thus, this reduction proves that 3-SAT is at least as hard as SAT, demonstrating the 

equivalence of the two problems in terms of computational complexity. 

 

2. Reduction from 3-SAT to K-Clique 

Goal: 

Transform a 3-SAT formula into a graph such that finding a K-Clique in the graph 

corresponds to solving the 3-SAT problem. 

 

Graph Construction 

1. Vertices (Variables and Literals) 
o Each literal (e.g., xi or ¬xi) in the 3-SAT formula is represented as a vertex in the 

graph. 

2. Clause Representation (Triangles) 
o For each clause (l1 ∨ l2 ∨ l3), create a triangle (fully connected set of three vertices) 

in the graph. 
o Each triangle contains the three literals in that clause. 

3. Edges (Connecting Compatible Literals) 
o Edges are added between vertices that belong to different clauses if they are 

compatible (i.e., they do not contradict each other). 
o Incompatibility Condition: If two vertices represent complementary literals (e.g., xi 

and ¬xi), they are not connected. 

 



K-Clique Formation 

 The clique size (K) is equal to the number of clauses in the 3-SAT formula. 
 A K-Clique in this graph represents a truth assignment that satisfies all clauses. 

Why This Works 

 If a K-Clique exists, it must contain one vertex from each clause, meaning that each clause 
has at least one true literal. 

 If a literal is in the clique, its complementary literal cannot be included, ensuring a valid 
truth assignment. 

Reduction Chain 

 3-SAT ≤p K-Clique → Finding a K-Clique in the constructed graph is equivalent to solving the 
3-SAT problem. 

 

Reduction from 3-SAT to Hamiltonian Cycle 

The goal is to transform a 3-SAT formula into a directed graph such that finding a 

Hamiltonian cycle in this graph corresponds to solving the 3-SAT problem. 

Graph Construction 

1. Vertices (Literals and Clauses Representation) 
o Each literal (xi or ¬xi) in the 3-SAT formula is represented as a vertex in the 

graph. 

o Each clause (l1 ∨ l2 ∨ l3) is represented as a group of three vertices 

corresponding to its literals. 

o A start vertex (S) and an end vertex (T) are introduced to guide traversal. 

2. Edges (Ensuring Logical Flow and Compatibility) 

o Within Each Clause:  
 The three literals of a clause are arranged in a cycle (ensuring at least 

one literal per clause is selected). 

o Between Clauses:  
 Directed edges connect compatible literals (i.e., those that do not 

contradict each other) across different clauses. 

o Avoiding Contradictions:  
 If a literal xi is chosen, then its negation ¬xi should not be reachable. 

o Start and End Connections:  
 The start vertex (S) is connected to one literal from the first clause. 

 The end vertex (T) is connected to one literal from the last clause. 

Hamiltonian Cycle Formation 

 A Hamiltonian cycle in this graph must pass through one literal from each clause, 

ensuring that at least one literal per clause is selected. 



 The cycle must return to the start vertex without contradictions, implying a valid 

truth assignment. 

Why This Works 

 If a Hamiltonian cycle exists, it must include one vertex from each clause and 

avoid contradictions. 

 This ensures that there is a truth assignment satisfying the 3-SAT formula. 

Reduction Chain 

 3-SAT ≤p Hamiltonian Cycle → Finding a Hamiltonian cycle in the constructed 

graph is equivalent to solving the 3-SAT problem. 

 

 

 


