Foundations of Algorithm Design and Machine Learning

Name: Kshitish Raj Roll No. : 24BM6JP25 Date : 06-02-2025 Lecture Slot: 8:00 hrs to 9:00 hrs

Revision

Basic Complexity Class Relations

- **P** ⊂ **NP** ∩ **Co-NP** → Problems solvable in polynomial time are a subset of both NP and Co-NP.
- **NPC** \subset **NP** \rightarrow NP-Complete (NPC) problems are a subset of NP.
- If $NP \subseteq P$ (Unknown Case) \rightarrow Two possibilities:
 - 1. $\mathbf{P} = \mathbf{NP} \rightarrow$ Polynomial-time solvability implies verifiability.
 - 2. $\mathbf{P} \neq \mathbf{NP} \rightarrow$ Some problems in NP cannot be solved in polynomial time.

Definitions

- $\mathbf{P} = \mathbf{Q} \rightarrow \text{Problem Q can be solved in } \mathbf{O}(\mathbf{n}^k) \text{ time.}$
- $NP = Q \rightarrow Problem Q's solution can be verified in O(n^k) time.$
- **Co-NP** = $\mathbf{Q} \rightarrow$ Complement of Q belongs to NP.

NP-Completeness (NPC)

A problem is **NP-Complete** if:

- 1. It belongs to NP.
- 2. All problems in NP can be polynomial-time reducible to it.

Reduction Concept

- **Reduction (≤p)**: If a known **NP-Complete (NPC) problem** can be polynomially reduced to a **new problem**, then the new problem is at least as hard as the known NPC problem.
- Notation: Known NPC Problem ≤p New Problem

Problems in P (Solvable in polynomial time): **Shortest Path Problems in NP** (Solution can be verified in polynomial time): **Longest Path**

Reduction Chain of NP-Complete Problems

- 1. **SAT** \in NPC
- 2. **SAT** \leq **p 3-SAT** (Reduction from SAT to 3-SAT)
- 3. **3-SAT ≤p K-Clique** (Reduction from 3-SAT to K-Clique)
- 4. **3-SAT ≤p Hamiltonian Cycle** (Reduction from 3-SAT to Hamiltonian Cycle)

1. Reduction from SAT to 3-SAT:

To reduce the SAT problem to the 3-SAT problem, we will transform a given Boolean formula in conjunctive normal form (CNF) into an equivalent 3-SAT formula, ensuring that each clause contains exactly three literals.

Construction of the 3-SAT Formula:

1. Handling Clauses with Three or Fewer Literals:

- If a clause already contains exactly three literals, it remains unchanged.
- If a clause contains fewer than three literals, we introduce new dummy variables to extend it to three literals.

Examples:

- $\circ~$ A clause with one literal, e.g., (x1), is transformed into (x1 V y V ¬y), where y is a new variable.
- A clause with one literal, e.g., (x1 V x2), is transformed into (x1 V y V \neg y), where y is a new variable.
- $\circ~$ A clause with two literals, e.g., (x1Vx2), is transformed into (x1 V x2 V y), where y is a new variable.

2. Handling Clauses with More Than Three Literals:

• If a clause contains more than three literals, we break it into multiple clauses, each containing exactly three literals, by introducing new auxiliary variables.

Example:

- Consider the clause (x1 V x2 V x3 V x4 V x5),
- We introduce new variables y1 and y2 and split the clause as follows:
 - (x1 ∨ x2 ∨ y1)
 - (¬y1 ∨ x3 ∨ y2)
 - (¬y2 ∨ x4 ∨ x5)

This transformation ensures that each new clause has exactly three literals while preserving the logical equivalence of the original formula.

3. Why This Works:

- The transformation preserves satisfiability:
 - If the original SAT formula is satisfiable, there exists an assignment of truth values that satisfies each clause. The introduced variables do not affect the truth assignment.
 - If the transformed 3-SAT formula is satisfiable, then the original formula is also satisfiable, as the newly introduced variables ensure logical consistency.
- Since this transformation is polynomial in size, it establishes that SAT reduces to 3-SAT in polynomial time.

Thus, this reduction proves that 3-SAT is at least as hard as SAT, demonstrating the equivalence of the two problems in terms of computational complexity.

2. Reduction from 3-SAT to K-Clique

Goal:

Transform a **3-SAT formula** into a **graph** such that finding a **K-Clique** in the graph corresponds to solving the **3-SAT** problem.

Graph Construction

- 1. Vertices (Variables and Literals)
 - Each **literal** (e.g., xi or ¬xi) in the **3-SAT formula** is represented as a **vertex** in the graph.
- 2. Clause Representation (Triangles)
 - For each **clause** (I1 V I2 V I3), create a **triangle** (fully connected set of three vertices) in the graph.
 - Each triangle contains the three literals in that clause.
- 3. Edges (Connecting Compatible Literals)
 - Edges are added between vertices that belong to different clauses if they are compatible (i.e., they do not contradict each other).
 - Incompatibility Condition: If two vertices represent complementary literals (e.g., xi and ¬xi), they are not connected.

K-Clique Formation

- The clique size (K) is equal to the number of clauses in the 3-SAT formula.
- A K-Clique in this graph represents a truth assignment that satisfies all clauses.

Why This Works

- If a K-Clique exists, it must contain one vertex from each clause, meaning that each clause has at least one true literal.
- If a **literal is in the clique**, its **complementary literal cannot be included**, ensuring a valid truth assignment.

Reduction Chain

 3-SAT ≤p K-Clique → Finding a K-Clique in the constructed graph is equivalent to solving the 3-SAT problem.

Reduction from 3-SAT to Hamiltonian Cycle

The goal is to **transform a 3-SAT formula into a directed graph** such that finding a **Hamiltonian cycle** in this graph corresponds to solving the **3-SAT** problem.

Graph Construction

- 1. Vertices (Literals and Clauses Representation)
 - Each literal (xi or \neg xi) in the **3-SAT formula** is represented as a **vertex** in the graph.
 - Each clause ($11 \lor 12 \lor 13$) is represented as a group of three vertices corresponding to its literals.
 - A start vertex (S) and an end vertex (T) are introduced to guide traversal.

2. Edges (Ensuring Logical Flow and Compatibility)

• Within Each Clause:

- The three literals of a clause are arranged in a **cycle** (ensuring at least one literal per clause is selected).
- Between Clauses:
 - Directed edges connect **compatible literals** (i.e., those that do not contradict each other) across different clauses.
- Avoiding Contradictions:
 - If a literal xi is chosen, then its negation $\neg xi$ should not be reachable.
- **Start and End Connections:**
 - The start vertex (S) is connected to one literal from the first clause.
 - The end vertex (T) is connected to one literal from the last clause.

Hamiltonian Cycle Formation

• A Hamiltonian cycle in this graph must pass through one literal from each clause, ensuring that at least one literal per clause is selected.

• The cycle must return to the **start vertex** without contradictions, implying a **valid truth assignment**.

Why This Works

- If a **Hamiltonian cycle exists**, it must include **one vertex from each clause** and **avoid contradictions**.
- This ensures that there is a **truth assignment** satisfying the **3-SAT formula**.

Reduction Chain

• **3-SAT ≤p Hamiltonian Cycle** → Finding a **Hamiltonian cycle** in the constructed graph is **equivalent** to solving the **3-SAT problem**.