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Problem Complexity vs. Algorithm Complexity 
Problem Complexity 

Problem complexity refers to the inherent difficulty of a problem, regardless of the 
algorithm used to solve it. It defines the minimum possible complexity that any 
algorithm solving the problem must have. In other words, it establishes a lower bound 
on the computational resources (time or space) required. 

We are not concerned with how to solve the problem here; rather, we are determining 
how hard the problem is at a fundamental level. 

Examples: 

1. Maximum Finding Problem: 

o Given an array of n numbers, the minimum number of comparisons 
required to find the maximum is at least n−1. 

o This means the problem has a lower bound of Ω(n) time complexity. 

2. Sorting Problem: 

o Any comparison-based sorting algorithm must perform at least nlogn 
comparisons in the worst case. 

o Thus, the sorting problem has a lower bound of Ω(nlogn) time complexity. 

 

Understanding Problem Complexity Using Reduction 

When we talk about problem complexity, we’re essentially trying to figure out the lowest 
possible complexity required to solve a problem. In other words, we’re asking: How hard 
is the problem at its core? This isn’t about finding ways to solve it—it’s about 
determining the minimum effort that any solution would require. 



 

 

To figure out the complexity of an unknown problem (let’s call it Problem Q), we 
compare it to a known problem (Problem P) whose complexity is already well-defined. 
The idea works like this: 

1. If we can transform the input of Problem Q to resemble the input of Problem P, 
and 

2. If we can transform the output of Problem P back into the format of Problem Q, 

then we can conclude: 
Problem Q is at least as hard as Problem P. 

In simpler terms, if solving Problem P requires a specific amount of effort (for example, 
proportional to a function of input size), then solving Problem Q cannot take less effort 
than that. 

Example: Sorting and Convex Hull 

1. Sorting Problem (P): 
Sorting is a well-studied problem, and it’s known that it cannot be solved in less 
than "n times log(n)" time (n log n) for "n" elements in the comparison-based 
model. 

2. Convex Hull Problem (Q): 
The Convex Hull problem involves finding the smallest convex polygon that can 
enclose a set of points on a 2D plane. 

 
so we can say that If we can transform the input/output of the Convex Hull problem into 
the input/output of the Sorting problem, it shows that sorting is inherently a part of 
solving the Convex Hull problem. This means the Convex Hull problem also requires at 
least "n times log(n)" effort. 

 



Algorithmic complexity: 

Algorithmic complexity is a fundamental concept in computer science that helps us 
evaluate how efficiently an algorithm can solve a problem in terms of time and space. It 
focuses on analyzing the number of computational steps required to arrive at a solution, 
especially as the input size increases. The efficiency of an algorithm is often expressed 
using Big-O notation, which provides an upper bound on the number of operations 
performed in the worst-case scenario. 

Example: Sorting Algorithms 

Sorting is a common problem in computer science, and different sorting algorithms 
have varying levels of efficiency. 

1. Bubble Sort: 

o A simple sorting algorithm that repeatedly swaps adjacent elements if 
they are in the wrong order. 

o Has a time complexity of O(n²) in the worst case. 

o This means that as the input size (n) increases, the number of operations 
grows quadratically, making it inefficient for large datasets. 

2. Merge Sort: 

o A more efficient sorting algorithm based on the divide-and-conquer 
approach. 

o Recursively splits the array into smaller subproblems, sorts them, and 
then merges the results. 

o Has a time complexity of O(n log n) in the worst case, which is 
significantly better than Bubble Sort. 

o It remains efficient even for large datasets and is widely used in real-world 
applications. 

Understanding algorithmic complexity allows us to compare different approaches and 
choose the most efficient one for a given problem. While some algorithms may be 
easier to implement, they might not always be the best choice when dealing with large-
scale computations. Selecting the right algorithm can lead to significant performance 
improvements and optimal resource utilization. 

 

 

 



The complexity of a problem and the complexity of an algorithm are two distinct yet 
interconnected concepts in computational theory. Problem complexity refers to the 
fundamental difficulty of solving a given problem, irrespective of the algorithm used. It 
represents the minimum complexity that any algorithm must have to solve the problem 
efficiently. On the other hand, algorithmic complexity focuses on the efficiency of a 
specific algorithm in solving the problem. Different algorithms may have different 
complexities, and the goal is to find the most efficient approach. 

Key Differences Between Problem Complexity & Algorithmic Complexity 

• Problem Complexity defines the inherent difficulty of a problem and establishes 
a theoretical lower bound on how efficiently it can be solved. 

• Algorithmic Complexity measures the efficiency of a specific algorithm used to 
solve the problem, often expressed in Big-O notation. 

• If the algorithmic complexity matches the problem’s lower bound, then the 
solution is considered optimal, meaning no other algorithm can solve it more 
efficiently. 

 

 

 

Types of Research in Complexity Analysis 

Two main types of research focus on understanding and improving computational 
complexity: 

1. Algorithmists: 



o Work on designing and optimizing algorithms to make them more 
efficient. 

o Their primary goal is to reduce the complexity of solving problems by 
finding better approaches. 

2. Theorists: 

o Focus on proving the inherent difficulty of problems by establishing 
theoretical lower bounds. 

o They analyze whether a problem can be solved within a given complexity 
limit and determine if a more efficient solution is even possible. 

o Example: In matrix multiplication, theorists define the theoretical lower 
bound of complexity, and algorithmists strive to develop an algorithm that 
reaches this bound efficiently. 

Understanding the relationship between problem complexity and algorithmic 
complexity is crucial in computational research. While some problems have well-
defined efficient solutions, others remain inherently difficult, driving continuous 
exploration in both theoretical and practical algorithm design. 

Classification of problem as Tractable vs. Intractable Problems 

 

 

 

A problem is considered tractable if there exists an algorithm that can solve it 
efficiently, meaning it runs in polynomial time, denoted as O(nᵏ), where k is a constant. 
These problems are computationally feasible because even for large inputs, the 
required number of steps grows at a reasonable rate. Examples of tractable problems 



include sorting a list using Merge Sort (O(n log n)) or finding the shortest path in a graph 
using Dijkstra’s Algorithm (O(n²) or better with optimizations). 

On the other hand, intractable problems are those for which no known polynomial-time 
algorithm exists. Instead, the best-known solutions run in exponential time (e.g., O(2ⁿ) 
or worse), making them practically unsolvable for large inputs. A classic example is the 
Traveling Salesman Problem (TSP), where a salesperson must visit multiple cities and 
return to the starting point while covering the shortest possible distance. As the number 
of cities increases, the number of possible routes grows exponentially, making it 
computationally impractical to solve exactly for large datasets. 

Classifying Problems: P vs. NP 

 

 

 

Example:  

Shortest path ∈ P 

Longest path ∈ NP 

 

 

 

 

To formally categorize problems, computer scientists use two important classes: P 
(Polynomial Time) and NP (Nondeterministic Polynomial Time). 

• P (Polynomial Time): This class contains problems that can be solved efficiently 
using algorithms with polynomial-time complexity (O(nᵏ)). For example, finding 
the shortest path in a graph (like Dijkstra’s algorithm) falls into this category 
because there exists an algorithm that can compute the result efficiently.  

• NP (Nondeterministic Polynomial Time): These are problems for which 
verifying a given solution is easy (can be done in polynomial time), but finding 
that solution in the first place may take exponential time. For instance, in the 
Subset Sum Problem, given a set of numbers, checking whether a subset sums 
to a target value can be done quickly, but finding such a subset requires trying 
numerous combinations, making it computationally expensive. 

Why Does This Matter? 

Exponential NP P 



One of the biggest unsolved questions in computer science is whether P = NP—that is, 
whether every problem that is easy to verify (NP) can also be solved efficiently (P). If this 
were proven true, many currently unsolvable problems could suddenly be computed in 
practical time, revolutionizing fields like cryptography, optimization, and artificial 
intelligence. However, if P ≠ NP, then some problems will always remain fundamentally 
difficult, requiring exponential time to solve. 

In essence, tractability determines whether a problem is feasible to solve in real-world 
applications. While some problems, like sorting and searching, have well-optimized 
algorithms, others, like TSP or certain cryptographic functions, remain intractable, 
forming the foundation for security and computational limits. 

 


