
FOUNDATIONS OF ALGORITHM DESIGN AND MACHINE 

LEARNING 

ALL-PAIRS SHORTEST PATH IN A GRAPH (Additional) 

The All-Pairs Shortest Path (APSP) problem involves finding the shortest paths 

between all pairs of vertices in a given directed weighted graph. There are several 

possible cases for the graph, and different approaches exist depending on the 

graph’s characteristics. 

Given a weighted graph G=(V,E), where V represents the set of vertices and E 

represents the set of weighted edges, we can determine the shortest paths between 

all pairs of vertices. The approach to solving the APSP problem depends on the 

characteristics of the graph, leading to four cases: 

1. A Directed Acyclic Graphs(DAG) with real-valued edge weights (no cycles). 

2. A graph with strictly positive edge weights. 

3. A graph with real-valued edge weights (including negatives) but no negative-

weight cycles. 

4. A graph with arbitrary edge weights, potentially containing negative cycles. 

Case 1: Directed Acyclic Graphs (DAGs) 

Given a Directed Acyclic Graphs DAG, compute the shortest paths between all pairs 

of vertices. Since DAGs contain no cycles. Extending the recursive DFS approach to 

handle all pairs via topological sorting and dynamic programming. 

Pseudocode for All-Pairs Shortest Paths in DAGs  

Extending the recursive DFS approach to handle all pairs via topological sorting and 

dynamic programming. 



Pseudocode Explanation  

1. Topological Sorting: 

• Ensures nodes are processed in an order where all predecessors of a 

node are handled before the node itself. 

2. Dynamic Programming via DFS: 

• For each node u (acting as the source), recursively traverse its 

successors. 

• Update cost[u][v] for every reachable node v using the formula: 

cost[u][v]=min(cost[u][v],cost[u][current]+weight(current,v)) 

# Initialization 
1. Initialize a 2D cost matrix where: 
   - cost[u][v] = ∞ for all u, v ∈ V 
   - cost[u][u] = 0 for all u ∈ V 
   - For each edge (u, v) with weight w: 
       cost[u][v] = w  # Initialize direct edges 
 
2. Topologically sort nodes into "topo_order" 
 
# Modified DFS-based Path Relaxation 
Function DFSP_AP(u, current, visited, cost): 
    If visited[current]: 
        return 
    Mark visited[current] = True 
     
    For each successor v of current: 
        # Update FIRST before recursion 
        new_cost = cost[u][current] + weight(current, v) 
        If new_cost < cost[u][v]: 
            cost[u][v] = new_cost  # Update path cost 
         
        DFSP_AP(u, v, visited, cost)  # Then recurse 
 
# Main Execution 
For each node u in topo_order: 
    Initialize visited array to False for all nodes 
    DFSP_AP(u, u, visited, cost)  # Compute paths from u 



Time complexity of O(|V| *( |V| * |E|)) = O(|V|2 + |V| * |E|) 

Example:  

Edges: 

• A → B (3) 

• A → C (5) 

• B → D (2) 

• C → D (1) 

• D → E (4) 

• E → F (6) 

Topological Order: [A, B, C, 

D, E, F] 



 

1. Initialization 
• Initialize a cost matrix cost[u][v] where: 

o cost[u][u] = 0 (cost to self is zero) 
o All other entries are set to infinity (∞), since initially, no paths are known. 

2. Process Node A as Source 
• Call DFSP_AP(A, A, visited, cost) to compute paths from node A to all other nodes. 

2.1: Visit Node A 
• Mark A as visited. 
• Successors of A: B, C. 
• Update the paths from A to B and C: 

o cost[A][B] = min(∞, 0 + 3) = 3 
o cost[A][C] = min(∞, 0 + 5) = 5 

2.2: Recurse into Node B 
• Mark B as visited. 
• Successor of B: D. 
• Update path from A to D: 

o cost[A][D] = min(∞, cost[A][B] + 2) = 3 + 2 = 5 
2.3: Recurse into Node C 

• Mark C as visited. 
• Successor of C: D. 
• Update path from A to D: 

o cost[A][D] = min(5, cost[A][C] + 1) = min(5, 5 + 1) = 5 (no change since the previous 
path was shorter) 

2.4: Recurse into Node D 
• Mark D as visited. 
• Successor of D: E. 
• Update path from A to E: 

o cost[A][E] = min(∞, cost[A][D] + 4) = 5 + 4 = 9 
2.5: Recurse into Node E 

• Mark E as visited. 
• Successor of E: F. 
• Update path from A to F: 

o cost[A][F] = min(∞, cost[A][E] + 6) = 9 + 6 = 15 
o  

After processing all nodes in the topological order (A → B → C → D → E → F), the final cost  
matrix will be: 

 



 

Case 2: Graphs with Positive Edge Weights 

Given a graph where all edge weights are positive, compute the shortest paths 

between all pairs of vertices. Since there are no negative weights, Dijkstra’s 

algorithm is the most efficient approach.  

Modified Best-First Search for All-Pairs Shortest Paths (APSP) in Positive-

Weighted Graphs. Extending the single-source BFSW algorithm to compute 

shortest paths between all pairs of vertices. Apply Dijkstra’s Algorithm from each 

node using a priority queue for optimization. 

Pseudo code Explanation  

1. Initialization: 

# Initialize a cost matrix for all pairs 
cost_matrix = { u: { v: ∞ for v in V } for u in V } 
 
for each source u in V: 
    visited = { v: 0 for v in V }  # Track processed nodes for this source 
    cost = { v: ∞ for v in V }     # Shortest paths from u to all v 
    cost[u] = 0                    # Distance from u to itself is 0 
    OrQ = PriorityQueue()          # Ordered by current shortest path cost 
    OrQ.insert(u, 0)               # Start with the source 
     
    while OrQ is not empty: 
        j = OrQ.remove_min()       # Node with smallest current cost 
        if visited[j] == 1: 
            continue               # Skip already visited nodes 
        visited[j] = 1 
         
        # Update costs for all neighbors of j 
        for each k in succ(j): 
            new_cost = cost[j] + C[j][k] 
            if new_cost < cost[k]: 
                cost[k] = new_cost 
                OrQ.insert_or_update(k, new_cost) 
     
    # Store results for this source 
    for v in V: 
        cost_matrix[u][v] = cost[v] 
 
return cost_matrix 



• A 2D matrix cost_matrix stores shortest distances for all pairs (u, v). 

• For each source u, reset visited and cost arrays. 

2. Priority Queue Processing: 

• Nodes are expanded in order of increasing path cost from u (greedy 

approach). 

• When a node j is dequeued, update costs for its neighbors via edge 

relaxation: 

cost[k]=min(cost[k],cost[j]+C[j][k]) 

3. Termination: 

• The algorithm processes all nodes reachable from u, not just a single 

target. 

• Results for u are stored in cost_matrix[u][*]. 

Example Execution 

Graph: 

Graph 

Edges: A→B (3), A→C (5), B→D (2), C→D (1), D→E (4), E→F (6) 

Processing Source A: 

1. Initialize cost[A][A] = 0.  

2. Expand A → update B (3), C (5). 

3. Expand B → update D (3+2=5). 

4. Expand C → update D (5→5+1=6 → 

discard, keep 5). 

5. Expand D → update E (5+4=9). 

6. Expand E → update F (9+6=15). 

Final cost_matrix[A][*] 
  

A B C D E F 

A 0 3 5 5 9 15 

 Similar we can compute the cost_matrix for B, C, D, E, F.  

The time complexity of the modified Best-First Search (BFSW) algorithm for All-

Pairs Shortest Paths (APSP) in a graph with positive edge weights depends on 



the priority queue (OrQ) implementation. Here’s the breakdown in terms of nodes (V) 

and edges (E):For each source node u, the algorithm performs: 

1. Priority Queue Operations: 

• Each node is inserted and removed once from the queue. 

• Total operations: O(ElogV) (with a binary heap). 

2. Edge Relaxations: 

• Each edge is processed once. 

• Total operations: O(E). 

Thus, for one source, the complexity is:O(E+ElogV) 

All-Pairs (Aggregate Over All Sources) 

Since the algorithm runs for all N sources, the total complexity is:  

O(V⋅(E+ElogV))=O(VE+V2logV). 

Case 3: Graphs with Negative Weights (No Negative Cycles) 

Given a graph with negative edge weights but no negative weight cycles, 

compute the shortest paths between all pairs of vertices. Since Dijkstra’s algorithm 

fails with negative weights, we use Floyd-Warshall or Matrix Multiplication-Based 

Methods. 

1.Matrix Multiplication-Based Methods. 

Using a recursive matrix multiplication approach, this algorithm computes the 

shortest paths between all pairs of vertices in a graph with negative edge weights but 

no negative weight cycles. 

Pseudocode 



Explanation of Pseudocode 

1. Initialization: 

• The base case is defined as D[i,j,1] 

• D[i,j,1]=0 if i==j (distance from a vertex to itself is zero). 

• D[i,j,1]=C[i,j] if i≠j(direct edge cost or infinity if no direct edge 

exists). 

2. Recursive Definition: 

• For each power of two (2k), compute D[i,j,2k] using the 

formula:D[i,j,2k]=min m∈V {D[i,m,2k−1]+D[m,j,2k−1]} 

Function MatrixMultiplicationAPSP(G): 
    Input: G = (V, E), where V is the set of vertices and E is the set of edges 
           C[i][j] = weight of edge (i, j) or ∞ if no edge exists 
    Output: D[i][j] = shortest path from vertex i to vertex j 
 
    n = |V|  # Number of vertices 
 
    # Initialize base case for D[i][j][1] 
    For each i in V: 
        For each j in V: 
            If i == j: 
                D[i][j][1] = 0  # Distance from a vertex to itself is 0 
            Else: 
                D[i][j][1] = C[i][j]  # Distance is the weight of the edge (i, j) or ∞ 
 
    # Compute D[i][j][2^k] recursively 
    k = 1 
    While 2^k < n: 
        For each i in V: 
            For each j in V: 
                D[i][j][2^k] = ∞ 
                For each m in V: 
                    D[i][j][2^k] = min(D[i][j][2^k], D[i][m][2^(k-1)] + D[m][j][2^(k-1)]) 
        k = k + 1 
 
    # Final solution is D[i][j][n-1] 
    Return D[i][j][n-1] for all i, j in V 



• This means that the shortest path from i to j using at most 2k edges is 

computed by combining paths through an intermediate vertex m. 

3. Iterative Computation: 

• Start with k=1 and double the number of edges considered at each 

step until 2k≥n. 

4. Final Solution: 

• The final shortest path between all pairs of vertices is stored 

in D[i,j,n−1] which considers all possible paths. 

Time Complexity 

• Outer Loop: Runs for log(V) iterations (as k doubles at each step). 

• Inner Loops: For each pair of vertices (i,j), we iterate over all intermediate 

vertices m. 

• Total complexity:O(V3⋅log(V)) 

Key Observations 

1. The algorithm uses dynamic programming principles and repeatedly updates 

the distance matrix. 

2. The time complexity is dominated by the triple nested loop for matrix 

multiplication: 

• Time Complexity: O(V3logV). 

3. It works efficiently for graphs with negative edge weights but no negative 

weight cycles. 

2. Floyd-Warshall. 

This algorithm computes the shortest paths between all pairs of vertices in a graph 

with negative edge weights but no negative weight cycles. It uses a recursive 

dynamic programming approach based on the Floyd-Warshall algorithm. 



Pseudocode 

Explanation of Pseudocode 

1. Initialization: 

• The base case F[i,j,0] represents the shortest paths when no 

intermediate vertices are allowed. 

• If i==j, the distance is zero (F[i,j,0]=0). 

• Otherwise, F[i,j,0]is the direct edge weight C[i,j] or infinity (∞) if no 

direct edge exists. 

2. Recursive Formula: 

• F[i,j,k] represents the shortest path from vertex I to vertex j using only 

the first k vertices as intermediate nodes. 

• The recursive formula is:F[i,j,k]=min(F[i,j,k−1],F[i,k,k−1]+F[k,j,k−1]) 

• This means that the shortest path from i to j either: 

Function FloydWarshallRecursive(G): 
    Input: G = (V, E), where V is the set of vertices and E is the set of edges 
           C[i][j] = weight of edge (i, j) or ∞ if no edge exists 
    Output: F[i][j][n] = shortest path from vertex i to vertex j 
 
    n = |V|  # Number of vertices 
 
    # Initialize base case for F[i][j][0] 
    For each i in V: 
        For each j in V: 
            If i == j: 
                F[i][j][0] = 0  # Distance from a vertex to itself is 0 
            Else: 
                F[i][j][0] = C[i][j]  # Distance is the weight of the edge (i, j) or ∞ 
 
    # Compute F[i][j][k] recursively for k = 1 to n 
    For k = 1 to n: 
        For each i in V: 
            For each j in V: 
                F[i][j][k] = min(F[i][j][k-1], F[i][k][k-1] + F[k][j][k-1]) 
 
    # Final solution is F[i][j][n] 
    Return F[i][j][n] for all i, j in V 



• Does not pass through vertex kk (use F[i,j,k−1]), or 

• Passes through vertex k (use F[i,k,k−1]+F[k,j,k−1]). 

3. Final Solution: 

• After processing all vertices as possible intermediates (k=n), the final 

matrix F[i,j,n] contains the shortest paths between all pairs of vertices. 

Key Observations 

1. The algorithm systematically considers all possible paths by incrementally 

adding intermediate nodes. 

2. It handles negative edge weights but requires no negative weight cycles. 

3. The time complexity is cubic (O(V3)), making it efficient for dense graphs. 

Example 

1. Vertices: A, B, C 

2. Edges (Directed):  

o A → B with weight -1 

o B → C with weight -2 

o A → C with weight 1 

Graph Properties 

3. Contains negative-weight edges 

4. No negative cycles (The cycle A → B 

→ C → A is hypothetical and does not exist in this directed acyclic graph) 

Floyd-Warshall Execution 

1: Initial Distance Matrix 

 

2: After Intermediate Node B 

• Update paths using B as an intermediate node: 

o A → C: 

min(1,(−1)+(−2))=−3\min(1, (-1) + (-2)) = -3min(1,(−1)+(−2))=−3 



 

3: Final Distance Matrix 

(Same as Step 2 since no further updates occur) 

 

Key Observations 

1. Negative Edge Handling: Floyd-Warshall correctly handles negative weights 

(e.g., A → C improves from 1 to -3 via B). 

2. Cycle Detection: No negative cycles exist. If C → A had weight 3, the cycle A 

→ B → C → A would sum to 0 (non-negative). 

3. Time Complexity: O (|V|3) = O(33) = 27operations for this example. 

Case 4: Graphs with Negative Edge Cycles 

Given a graph that may contain negative weight cycles, compute the shortest 

paths between all pairs of vertices. If a negative cycle exists, distances decrease 

indefinitely, making shortest paths undefined. 



To compute all-pairs shortest paths in graphs that may contain negative weight 

cycles, the Bellman-Ford algorithm can be adapted. 

Explanation of Pseudocode 

1. Matrix Initialization 

• Creates a 2D distance matrix instead of a 1D array 

• dist[s][v] = shortest distance from source s to v 

2. Per-Source Execution 

• Runs Bellman-Ford once for each vertex as the source 

• Total time complexity: O(∣V∣2∣E∣) 

function AllPairsBellmanFord(G): 
    n = |V| 
    // Initialize distance matrix 
    dist = n x n matrix filled with ∞ 
     
    for each source s in V: 
        // Single-source Bellman-Ford for source s 
        dist[s][s] = 0 
        for i = 1 to n-1: 
            for each edge (u, v) in E: 
                if dist[s][v] > dist[s][u] + C(u, v): 
                    dist[s][v] = dist[s][u] + C(u, v) 
         
        // Negative cycle detection for source s 
        has_negative_cycle = false 
        for each edge (u, v) in E: 
            if dist[s][v] > dist[s][u] + C(u, v): 
                has_negative_cycle = true 
                break 
         
        // Propagate -∞ if negative cycle exists 
        if has_negative_cycle: 
            for each node v in V: 
                if reachable_from_cycle(s, v): 
                    dist[s][v] = -∞ 
     
    return dist 



3. Negative Cycle Handling 

• Detects cycles per source using edge relaxation checks 

• Propagates −∞−∞ to all nodes reachable from a negative cycle 

via reachable_from_cycle() (implemented via BFS/DFS) 

In summary, different approaches to the All-Pairs Shortest Path (APSP) problem are 

suited to distinct types of graphs, each with its own computational complexity. 

Case 1 (Directed Acyclic Graphs - DAGs): The Recursive DFS Algorithm, which 

leverages the acyclic property of DAGs, provides an efficient solution by calculating 

all-pair paths at each node. This results in a time complexity of O(|V|2 + |V| * |E|) , 

making it particularly suitable for DAGs due to the absence of cycles. 

Case 2 (Graphs with Positive Edge Costs): Dijkstra's Algorithm, adapted for all-

source shortest paths by running it from each node as the source, gives a time 

complexity of O(|V| * (|E| log |V|)). This approach is optimal for graphs with positive 

edge weights, as Dijkstra's algorithm efficiently finds the shortest path using a priority 

queue. 

Case 3 (Graphs with Negative Edges but No Negative Cycles): For graphs with 

negative edges, the Floyd-Warshall Algorithm and Matrix Multiplication offer viable 

solutions. Floyd-Warshall has a time complexity of O(|V|3), while Matrix Multiplication 

provides a slightly faster O(|V|3 log |V|). Both are effective when negative edges are 

present but without negative weight cycles, offering comprehensive solutions for all 

pairs. 

Case 4 (Graphs with Negative Cycles): The Bellman-Ford Algorithm, with a 

complexity of O(|E| * |V|2), is suitable for graphs that may contain negative edge 

cycles. While slower than some of the other methods, Bellman-Ford is capable of 

detecting negative weight cycles and can handle graphs with such complexities. 

Graph Type Algorithm Time Complexity 

Directed Acyclic Graphs 
(DAGs) Recursive DFS O(|V|2 + |V| * |E|) 

Graphs with Positive Edge 
Costs 

Dijkstra’s Algorithm (per 
node) O(|V| * (|E| log |V|)) 

Graphs with Negative Edges 
(No Cycles) Floyd-Warshall O(|V|3) 

 Matrix Multiplication O(|V|3 log |V|) 

Graphs with Negative Cycles Bellman-Ford O(|E| * |V|2) 



 

In conclusion, the choice of the algorithm depends on the type of graph being dealt 

with (DAG, positive weights, negative weights, or negative cycles) and the trade-off 

between time complexity and the graph's properties. Each algorithm provides an 

efficient method for tackling APSP based on the graph’s structure, offering solutions 

that balance performance and accuracy in varied contexts. 

 

 

 

 

 

 

 


