
 

Foundations of Algorithm Design and Machine Learning - Graph Theory  

[24BM6JP21] 
 

Week 04 Summary 

 

Summary of Graph Algorithms and BFS/DFS 
1. Introduction to Graph Theory 

Graph theory is fundamental in computer science and mathematics. A graph is a structure 
comprising: 

• Vertices (Nodes): Represent entities (e.g., cities, users in a social network). 

• Edges: Represent connections between nodes, which can be directed or undirected. 

Mathematically, a graph is represented as G = (V, E), where: 

• V: Set of vertices (nodes). 

• E: Set of edges representing relationships between vertices. 

 

2. Graph Representation 

Graphs can be represented in multiple ways: 

Adjacency Matrix 

• Uses a 2D array to indicate connections between nodes. 

• Time Complexity: 

o Space Complexity: O(V²) 

o Edge lookup: O(1) 

o Iterating over all edges: O(V²) 

• Suitable for dense graphs. 



Adjacency List 

• Maintains a list for each vertex with its neighbors. 

• Time Complexity: 

o Space Complexity: O(V+E) 

o Edge lookup: O(V) 

o Iterating over all edges: O(V+E) 

• Suitable for sparse graphs. 

3. Depth-First Search (DFS) 

DFS explores a graph deeply, visiting each branch before backtracking. It is used for: 

• Cycle Detection 

• Topological Sorting 

• Finding Connected Components 

DFS Algorithm Steps (Pseudocode give in weekly slides): 

1. Start at the initial node and mark it as visited. 

2. Recursively explore each unvisited neighbor. 

3. Backtrack when no unvisited neighbors are left. 

4. Repeat until all nodes are visited. 

 

DFS Time Complexity: 

• O(V+E) for adjacency list 

• O(V²) for adjacency matrix 

Applications of DFS: 

• Solving Constraint Satisfaction Problems (CSPs) like crosswords and Sudoku. 

• Detecting cycles in scheduling problems. 

• Finding shortest paths in board games like Snakes and Ladders. 

 



 

4. Breadth-First Search (BFS) 

BFS explores a graph level by level, using a queue to keep track of nodes. 

BFS Steps (Pseudocode give in weekly slides): 

1. Enqueue the starting node and mark it as visited. 

2. Dequeue the front node and explore its neighbors. 

3. Enqueue each unvisited neighbor. 

4. Repeat until the queue is 
empty.  

BFS Time Complexity: 

• O(V+E) for adjacency list 

• O(V²) for adjacency matrix 

Applications of BFS: 

• Finding the shortest path in 
unweighted graphs. 

• Solving network connectivity problems. 

 

 Directed Cyclic and Acyclic Graphs (DAGs) 
In graph theory, graphs can either have cycles (cyclic) or be free of cycles (acyclic). When dealing 
with directed graphs, understanding the distinction between cyclic and acyclic graphs is crucial 
for applications like task scheduling, dependency resolution, and shortest path computation. 

Directed Graphs: 

A directed graph (also called a digraph) is a graph where each edge has a direction, indicating a 
one-way relationship between nodes. 

Examples: 

• Webpages linking to each other (A → B means A links to B) 

• Prerequisite tasks in a project (Task A must be completed before Task B) 



1. Directed Cyclic Graphs: 

A cyclic graph contains one or more cycles. 
A cycle is a path in which you can start at a node, follow directed edges, and return to the same 
node. 

Example: 

Consider nodes A → B → C → A. This forms a cycle, as starting at node A leads back to A. 

Applications of Cycle Detection: 

• Detecting deadlocks in operating systems 

• Circular dependencies in software packages or databases 

Cycle Detection with DFS: 

• A backward edge in a DFS traversal indicates a cycle. 

 

2. Directed Acyclic Graph (DAG): 

A DAG is a directed graph without any cycles. 
This type of graph is widely used in many fields because it represents dependencies and 
processes that must be done in a specific order. 

Example: 

• Task scheduling: A DAG can represent tasks in a project where certain tasks depend on 
the completion of others. 

• Course prerequisites: Each course depends on completing earlier courses, forming a 
dependency structure. 

• Data processing pipelines: Stages of data transformations must follow a specific 
sequence. 

Topological Sorting in DAGs: 

A topological order is a linear ordering of nodes such that for every directed edge u→v, 
node u comes before v. This ensures tasks or operations are processed in the correct sequence. 
How to Find Topological Order: 

• Use DFS to assign exit times. 

• The reverse order of exit times gives the topological order. 



Applications of DAGs: 

• Task Scheduling: Ensures tasks are executed in the correct sequence. 

• Expression Trees: DAGs represent mathematical expressions in compilers. 

• Version Control: DAGs track changes and dependencies between commits. 

• Shortest Path Algorithms: More eZicient for DAGs than general graphs. 

 

Conclusion 

Understanding graph theory concepts, DFS, BFS, and their applications is essential for solving 
complex real-world problems, such as scheduling, shortest path computation, and constraint 
satisfaction. 

 

 

Shortest Path in a DAG Algorithm 
 

1. Directed Weighted Acyclic Graphs (DAGs) 

Directed Weighted Acyclic Graphs are used to solve the shortest path problem more eZiciently 
than general graphs by utilizing topological sorting and edge relaxation. 

Shortest Path in a DAG Algorithm 

The algorithm finds the shortest path from a source node to a destination node using a priority 
queue (min-heap). 

1. Initialization: 

o Create a distance array dist[ ] initialized to ∞ for all nodes except the source node 
(dist[source] = 0). 

o Maintain a queue and enqueue the source node with distance 0. 

2. Node Processing: 

o Extract the node with the smallest distance from the queue. 



o Relax all outgoing edges—update the distance for adjacent nodes if a shorter path is 
found and reinsert them into the queue. 

Time Complexity: O(V+E) where V is the number of vertices and E is the number of edges. 

 

2. Recursive Formulation of Dijkstra’s Shortest Path 

This formulation computes the shortest path by recursively exploring all successors and selecting 
the one with the smallest cost. 

1. Base Cases: 

o If s=g, the shortest path from a node to itself is 0. 

o If G=NULL, the goal node is unreachable (path cost = ∞). 

2. Recursive Case: 

o For each successor m of s, calculate the cost of traveling from s to m. 

o Recursively compute the shortest path from m to g and select the minimum cost. 

 

 

3. Spanning Trees and Minimum Spanning Trees (MSTs) 

A spanning tree of a graph connects all vertices without forming cycles. The goal of an MST is to 
find the tree with the minimum total edge weight. 

Applications of MSTs: 

• Network design (e.g., minimizing cable length in a communication network). 

• Circuit design. 

• Traveling Salesman Problem (sub-problem). 

MST Algorithms: 

1. Prim’s Algorithm: 

o Greedily adds the minimum-weight edge connecting a vertex inside the tree to a 
vertex outside, ensuring no cycles are formed. 
Time Complexity: O(ElogV). 



 

 

2. Kruskal’s Algorithm: 

o Sorts all edges by weight and adds the smallest edges to the MST while avoiding 
cycles using the union-find data structure. 
Time Complexity: O(ElogV). 

 

Conclusion 

Understanding shortest path algorithms, recursive formulations, and minimum spanning trees is 
essential for optimizing network designs and solving real-world optimization problems. 
Techniques like Dijkstra’s algorithm and MSTs have practical applications in routing, scheduling, 
and network optimization. 

 

 

Shortest Path in DAG Using DFS and BFS 
 

1. Shortest Path in Directed Weighted Acyclic Graph (DAG) using DFS with Memoization 

In this approach, Depth-First Search (DFS) is used with memoization to optimize the shortest 
path calculation in a Directed Acyclic Graph (DAG). 
Memoization helps store previously computed results to avoid redundant calculations, making it 
eZicient compared to general graph algorithms like Dijkstra or Bellman-Ford. 

Algorithm Steps: 

1. Start at the source node. 

2. Recursively explore all paths to the destination node. 

3. Track and update the shortest cost for each node. 

4. Use memoization to avoid recalculating costs for already visited nodes. 



5. Time Complexity: O(V+E) — each node and edge is processed once.  

Example: 
Shortest path from node 1 to node 8: 

• Path: 1 → 2 → 4 → 7 → 8 

• Total Cost: 9 

 

 

2. Shortest Path in DAG using Best-First Search (BFS) 

Best-First Search (BFS) is another approach to finding the shortest path in a DAG. This method 
uses a priority queue (min-heap) to always expand the node with the current lowest cost, 
ensuring an optimal solution. 

Algorithm Steps: 

1. Initialization: Create a distance array (dist[]) initialized to ∞∞ and set the source node 
distance to 0. Use a priority queue to manage nodes. 

2. Processing Nodes: 

o Extract the node with the smallest distance from the queue. 

o Relax all its outgoing edges. 

o If a shorter path is found, update the distance and reinsert it into the priority queue. 

3. Termination: When all nodes are processed, return the shortest path cost to the 
destination. 

Example: 

• Path: 1 → 2 → 4 → 7 → 8 

• Total Cost: 9 

 


