
1

Introduction:

Shortest path algorithms are fundamental in graph theory, used for finding the most efficient route

between nodes. In this chapter, we will discuss the shortest path problem in Directed Weighted Acyclic

Graphs (DAGs) and explain an efficient approach using Depth-First Search (DFS) with Memoization.

Problem Statement:

Given a Directed Weighted Acyclic Graph (DAG) and a source node, we aim to find the shortest path

to a destination node. Unlike general graphs, where Dijkstra’s or Bellman-Ford algorithms are used,

DAGs allow for a recursive depth-first approach with topological sorting and memoization for

optimization.

Algorithm: Shortest Path in DAG using Depth-First Recursive Approach

The algorithm implements Shortest Path in a DAG using Depth-First Search (DFS) and Memoization.

This approach efficiently finds the shortest path by traversing the graph recursively, storing previously

computed results to avoid redundant calculations.

Pseudo Code:

FOUNDATIONS OF ALGORITHM DESIGN AND MACHINE LEARNING

DATE: 30th January 2025

visited[N]; // Boolean array to track visited nodes, initially all 0

cost[N]; // Stores the shortest known path to each node, initially ∞

succ[N]; // Adjacency list storing neighbors of each node

C[N][N]; // Cost matrix for edges between nodes

DFSP(G,node, g) {

 if (node == g) {

 cost[node] = 0; // Goal node has zero cost to itself

 }

 visited[node] = 1;

 int value = ∞; // Local variable to store the shortest cost

 for each n in succ[node] do {

 if (visited[n] == 0) {

 DFSP(n, g); // Recursive DFS call to explore further paths

 }

 value = min(value, cost[n] + C[node][n]);

 }

 cost[node] = value; // Update the shortest known cost to reach this node

 return cost[node];

}

2

Execution of DFSP(G,1, 8)

1. Start at Node 1

o visited[1] = 1

o Explore neighbors: Node 2 (cost 2) & Node 3 (cost 4)

2. Go to Node 2

o visited[2] = 1

o Explore neighbor: Node 4 (cost 1)

3. Go to Node 4

o visited[4] = 1

o Explore neighbors: Node 3 (cost 6) , Node 5 (cost 10), Node 6 (cost 1) & Node 7 (cost 2)

4. Go to Node 5

o visited[5] = 1

o Explore neighbors: Node 7 (cost 7) & Node 8 (cost 8)

5. Go to Node 7

o visited[7] = 1

o Explore neighbor: Node 8 (cost 4)

6. Reach Goal Node 8

o cost[8] = 0

7. Backtrack & Update Costs

o cost[7] = min(cost[8] + C[7,8]) = min(0 + 4) = 4

o cost[5] = min(cost[7] + C[5,7], cost[8] + C[5,8]) = min(4 + 7, 0 + 8) = 8

8. Continue Backtracking

o Compute for cost[6], cost[3], cost[4], cost[2] and cost[1] similarly.

Final Shortest Path Cost Calculation

After computing all values, the shortest path from Node 1 to Node 8 will be:

Path: 1 → 2 → 4 → 7 → 8

Total Cost: 9

Time Complexity Analysis:

• Each node is visited once in the recursive DFS traversal.

• Each edge is processed once when updating distances.

• Total Complexity: O(V+E)

This approach is efficient for DAGs since it avoids the overhead of priority queues and extra edge

relaxations found in Dijkstra's Algorithm.

3

Shortest Path in DAG using Best-First Search

Introduction:

Shortest path algorithms are crucial for efficiently finding the lowest-cost path between nodes. In a

Directed Weighted Acyclic Graph (DAG), the Best-First Search (BFS) technique can be used to find the

shortest path more efficiently by always expanding the most promising node first based on a priority

queue (min-heap).

Problem Statement:

Given a DAG and a source node, we aim to find the shortest path to a destination node. Instead of

exploring all paths equally, the Best-First Search (BFS) technique prioritizes nodes based on the

minimum cost encountered so far, always expanding the lowest-cost node first.

Algorithm: Shortest Path in DAG using Best-First Search

This approach utilizes a priority queue (min-heap) to always expand the least-cost node first.

Pseudo code:

SP_BestFirst(G, s, g)

{ Initialize dist[] to ∞ for all nodes except dist[s] = 0

 visit[s] = False

 Q <- {(s, 0)} // Priority queue storing (node, cost)

 while (Q is not empty)

 {

 (n, val) <- extract_min(Q) // Extract node with the smallest distance

 visit[n] = True

 for all m in successors(n)

 {

 if (!visit[m]) INSERT(Q, (m, dist[m]))

 if dist[n] + cost(n → m) < dist[m]

 {

 dist[m] = dist[n] + cost(n → m) // Update cost

 UPDATE(Q, (m, dist[m])) // Update priority queue with new cost

 }}}

 return dist[g] // Return the shortest path to the goal node}

4

Algorithm Explanation:

The algorithm follows these steps:

1. Initialization:

• Create a dist[] array initialized to ∞ for all nodes except the source node (dist[s] = 0).

• Create a visit[] array initialized to False for all nodes.

• Initialize a priority queue (min-heap) with the source node (s, 0).

2. Processing Nodes:

• While the queue is not empty:

o Extract the node with the smallest distance from the queue.

o Mark it as visited.

o Relax all outgoing edges from this node:

• If a shorter path is found to a neighbor, update its distance and enqueue it in the priority

queue.

3. Computing the Shortest Path:

• The priority queue ensures that nodes are processed in the order of minimum distance,

leading to an optimal solution.

Applying Best-First Search

We will track the distance array (dist[]) and priority queue (Q) updates carefully.

Step 1: Initialization

• Distance array: dist = [0,∞,∞,∞,∞,∞,∞,∞]

• Priority queue: Q=[(1,0)]

Processing
Node

Queue (Q) Before Extraction Queue (Q) After Updates Distance (dist[])

1 [(1, 0)] [(2, 2), (3, 4)] [0, 2, 4, ∞, ∞, ∞, ∞, ∞]

2 [(2, 2), (3, 4)] [(3, 4), (4, 3)] [0, 2, 4, 3, ∞, ∞, ∞, ∞]

4 [(3, 4), (4, 3)] [(3, 4), (6, 4), (7, 5), (5, 13)] [0, 2, 4, 3, 13, 4, 5, ∞]

7 [(3, 4), (6, 4), (7, 5), (5, 13)] [(3, 4), (6, 4), (5, 13), (8, 9)] [0, 2, 4, 3, 13, 4, 5, 9]

8 [(3, 4), (6, 4), (5, 13), (8, 9)] [(3, 4), (6, 4), (5, 13)] [0, 2, 4, 3, 13, 4, 5, 9]

Final Shortest Path Calculation

• The shortest path from node 1 to node 8 is:

1 → 2 → 4 → 7 → 8

• Total cost = 2 + 1 + 2 + 4 = 9

Thus, the shortest path is 1 → 2 → 4 → 7 → 8 with a cost of 9.

