FOUNDATIONS OF ALGORITHM DESIGN AND MACHINE LEARNING DATE: 30th January 2025

Introduction:

Shortest path algorithms are fundamental in graph theory, used for finding the most efficient route between nodes. In this chapter, we will discuss the shortest path problem in **Directed Weighted Acyclic Graphs (DAGs)** and explain an efficient approach using **Depth-First Search (DFS) with Memoization**.

Problem Statement:

Given a **Directed Weighted Acyclic Graph (DAG)** and a **source node**, we aim to find the shortest path to a **destination node**. Unlike general graphs, where **Dijkstra's or Bellman-Ford algorithms** are used, DAGs allow for a **recursive depth-first approach** with **topological sorting** and **memoization** for optimization.

Algorithm: Shortest Path in DAG using Depth-First Recursive Approach

The algorithm implements **Shortest Path in a DAG** using **Depth-First Search (DFS)** and **Memoization**. This approach efficiently finds the shortest path by traversing the graph recursively, storing previously computed results to avoid redundant calculations.

Pseudo Code:

visited[N]; cost[N]; succ[N]; C[N][N];	 // Boolean array to track visited nodes, initially all 0 // Stores the shortest known path to each node, initially ∞ // Adjacency list storing neighbors of each node // Cost matrix for edges between nodes
DFSP(G,no if (node cost[n }	de, g) { == g) { ode] = 0; // Goal node has zero cost to itself
visited[n int value	ode] = 1; = ∞ ; // Local variable to store the shortest cost
for each if (visit DFS } value }	n in succ[node] do { :ed[n] == 0) { P(n, g); // Recursive DFS call to explore further paths = min(value, cost[n] + C[node][n]);
cost[nod return co }	e] = value; // Update the shortest known cost to reach this node ost[node];

Execution of DFSP(G,1, 8)

- 1. Start at Node 1
 - \circ visited[1] = 1
 - Explore neighbors: Node 2 (cost 2) & Node 3 (cost 4)
- 2. Go to Node 2
 - \circ visited[2] = 1
 - Explore neighbor: Node 4 (cost 1)
- 3. Go to Node 4
 - \circ visited[4] = 1
 - Explore neighbors: Node 3 (cost 6), Node 5 (cost 10), Node 6 (cost 1) & Node 7 (cost 2)
- 4. Go to Node 5
 - \circ visited[5] = 1
 - Explore neighbors: Node 7 (cost 7) & Node 8 (cost 8)
- 5. Go to Node 7
 - \circ visited[7] = 1
 - Explore neighbor: Node 8 (cost 4)
- 6. Reach Goal Node 8
 - cost[8] = 0
- 7. Backtrack & Update Costs
 - o cost[7] = min(cost[8] + C[7,8]) = min(0 + 4) = 4
 - o cost[5] = min(cost[7] + C[5,7], cost[8] + C[5,8]) = min(4 + 7, 0 + 8) = 8
- 8. Continue Backtracking
 - Compute for cost[6], cost[3], cost[4], cost[2] and cost[1] similarly.

Final Shortest Path Cost Calculation

After computing all values, the shortest path from Node 1 to Node 8 will be:

Path: $1 \rightarrow 2 \rightarrow 4 \rightarrow 7 \rightarrow 8$ Total Cost: 9

Time Complexity Analysis:

- Each node is visited once in the recursive DFS traversal.
- Each edge is processed once when updating distances.
- Total Complexity: O(V+E)

This approach is efficient for **DAGs** since it avoids the overhead of priority queues and extra edge relaxations found in **Dijkstra's Algorithm**.

Shortest Path in DAG using Best-First Search

Introduction:

Shortest path algorithms are crucial for efficiently finding the lowest-cost path between nodes. In a **Directed Weighted Acyclic Graph (DAG)**, the **Best-First Search (BFS) technique** can be used to find the shortest path more efficiently by always expanding the **most promising node first** based on a priority queue (min-heap).

Problem Statement:

Given a **DAG** and a **source node**, we aim to find the **shortest path to a destination node**. Instead of exploring all paths equally, the **Best-First Search (BFS) technique** prioritizes nodes based on the **minimum cost** encountered so far, always expanding the lowest-cost node first.

Algorithm: Shortest Path in DAG using Best-First Search

This approach utilizes a priority queue (min-heap) to always expand the least-cost node first.

Pseudo code:

```
SP_BestFirst(G, s, g)
{ Initialize dist[] to \infty for all nodes except dist[s] = 0
  visit[s] = False
  Q <- {(s, 0)} // Priority queue storing (node, cost)
  while (Q is not empty)
  {
    (n, val) <- extract_min(Q) // Extract node with the smallest distance
    visit[n] = True
    for all m in successors(n)
    {
       if (!visit[m]) INSERT(Q, (m, dist[m]))
       if dist[n] + cost(n \rightarrow m) < dist[m]
       {
         dist[m] = dist[n] + cost(n \rightarrow m) // Update cost
         UPDATE(Q, (m, dist[m])) // Update priority queue with new cost
       }}
  return dist[g] // Return the shortest path to the goal node}
```

Algorithm Explanation:

The algorithm follows these steps:

1. Initialization:

- Create a dist[] array initialized to ∞ for all nodes except the source node (dist[s] = 0).
- Create a visit[] array initialized to False for all nodes.
- Initialize a priority queue (min-heap) with the source node (s, 0).

2. Processing Nodes:

- While the queue is **not empty**:
 - **Extract the node** with the **smallest distance** from the queue.
 - Mark it as visited.
 - **Relax all outgoing edges** from this node:
- If a **shorter path** is found to a neighbor, **update its distance** and **enqueue it** in the priority queue.

3. Computing the Shortest Path:

• The **priority queue ensures** that nodes are processed in the order of **minimum distance**, leading to an optimal solution.

Applying Best-First Search

We will track the **distance** array (dist[]) and **priority queue (Q)** updates carefully.

Step 1: Initialization

- Distance array: dist = $[0, \infty, \infty, \infty, \infty, \infty, \infty, \infty, \infty]$
- Priority queue: Q=[(1,0)]

Processing Node	Queue (Q) Before Extraction	Queue (Q) After Updates	Distance (dist[])
1	[(1, 0)]	[(2, 2), (3, 4)]	$[0, 2, 4, \infty, \infty, \infty, \infty, \infty]$
2	[(2, 2), (3, 4)]	[(3, 4), (4, 3)]	[0, 2, 4, 3, ∞, ∞, ∞, ∞]
4	[(3, 4), (4, 3)]	[(3, 4), (6, 4), (7, 5), (5, 13)]	[0, 2, 4, 3, 13, 4, 5, ∞]
7	[(3, 4), (6, 4), (7, 5), (5, 13)]	[(3, 4), (6, 4), (5, 13), (8, 9)]	[0, 2, 4, 3, 13, 4, 5, 9]
8	[(3, 4), (6, 4), (5, 13), (8, 9)]	[(3, 4), (6, 4), (5, 13)]	[0, 2, 4, 3, 13, 4, 5, 9]

Final Shortest Path Calculation

- The shortest path from node 1 to node 8 is:
 1 → 2 → 4 → 7 → 8
- Total cost = 2 + 1 + 2 + 4 = 9

Thus, the shortest path is $1 \rightarrow 2 \rightarrow 4 \rightarrow 7 \rightarrow 8$ with a cost of 9.

10

5

5

7

8

4

1

6

1

3

2

1