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The week (20-24 jan 2025) of the lectures discussed on the foundational design algorithms 
and problem solving paradigms. Several algorithms were discussed such as Divide and 
Conquer, Dynamic Programming and Greedy Approach. Practical implementations such as 
Median finding, Closest pair problem, Matrix chain multiplication and Longest common 
subsequence (LCS) were explained with step by step breakdown and complexity analysis. 
 
Algorithm design principles  
Step 1: Initial solution 

1.​ Recursive formulation 
2.​ Correctness 
3.​ Complexity analysis 

Step 2: Exploration of structure  
1.​ Decomposition 
2.​ Analysis recursive structure 
3.​ Recomposition 

Step 3: Solution refinement 
1.​ Balance/split 
2.​ Analysis of recurrence  
3.​ Identical subproblem 

Step 4: Data structuring and complexity 
1.​ Revise memory/information 
2.​ Analysis of space complexity 

Step 5: Final solution 
1.​ Traversal of recursive structure  
2.​ Complexity 
3.​ Pruning/ backtracking 
4.​ Implementation 

 
1. Median Finding Algorithm: 

1.​ Def: The median of a sequence is the middle element of the n- sorted numbers. If n 
is odd the median is the (n+1)/2 th  element. If n is even, the median is the n/2 th 

smallest element. 
2.​ Naive approach : sorting → selection : Sort the elements and then select the middle 

element. But the sorting algorithm takes 𝝮(nlogn) time which is suboptimal for large 
datasets. 

3.​ Optimal median finding algorithm is the selection algorithm: (median of medians) 
​ The problem of finding the kth element, including the median , can be solved 
optimally in O(n) time using the median of medians algorithm. 
 
Algorithm Median of medians: 
This is a divide and conquer approach that efficiently finds the median or kth smallest 
element in O(n) time. 
Steps:  
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Base case: If the number of elements n< 44, sort the array directly and return the kth 
smallest element  
divide : partition the array into [n/5] groups of 5 elements each. 
Sort groups: Sort each group individually and extract the median of each group. 
Find the MM (median of medians): recursively find the median of medians from the set of 
medians. 
Partition the array: A1: elements less than mm. A2: elements equal to mm, A3: elements 
greater than mm. 
Select in the correct subarray: If |A1| >= k, recurse on A1.  
If |A1| + |A2| >= k, return mm 
Else, recurse on A3 with the updated k = k-|A1|-|A2| 
 
Algorithm: select 
Input: An array A[1..n] of n elements and an integer k, 1 ≤ k ≤ n. 
Output: The kth smallest element in A. 
1. select(A, k) 
Procedure select(A, k) 
1. n← |A| 
2. if n < 44 then sort A and return (A[k]) 
3. Let q= ⌊n/5⌋. Divide A into q groups of 5 elements each. If 5 does 
not divide p, then discard the remaining elements. 
4. Sort each of the q groups individually and extract its median. Let 
the set of medians be M. 
5. mm← select(M, ⌈q/2⌉) {mm is the median of medians} 
6. Partition A into three arrays: 
A1 = {a | a < mm} 
A2 = {a | a = mm} 
A3 = {a | a > mm} 
7. case 
|A1| ≥ k: return select(A1, k) 
|A1| + |A2| ≥ k: return mm 
|A1| + |A2| < k: return select(A3, k − |A1| − |A2|) 
8. end case 
 

4.​ Analysis of the selection algorithm:  
○​ Correctness:The algorithm always finds the kth smallest element by the 

recursive selection. 
○​ Time complexity: Steps 1-4 solves or takes O(n) (Partitioning, sorting. finding  

median of medians takes O9n). recursive step solves utmost T(0.7n) 
elements in each step. 

○​ The recursion relation: T(n) <= T(n/5) + T(0.75n) + O(n) 
○​ Solves to O(n) using the recurrence theorem. 
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5.​ Key takeaways:  

○​ sorting based approach takes 𝝮(nlogn). 
○​ mm algorithm→ finds the median in O(n), making it optimal. 
○​ It ensures worst case linear time, unlike quickselect which has an O(n2) worst 

case. 
○​ The threshold (44 elements) is used to keep the constant factors 

manageable. 
6.​ Alternative approach: 

○​ A randomized algorithm can also achieve O(n) expected time. 
○​ Instead of selecting a deterministic median of medians, it randomly selects a 

pivot. 
○​ This is similar to QuickSelect, but lacks worst-case guarantees. 

7.​ Conclusion :  
○​ Naïve Sorting + Selection → Ω(n log n) 
○​ Median of Medians Algorithm → O(n) worst-case 
○​ Randomized Selection (QuickSelect) → O(n) expected, O(n²) worst-case 
○​ Optimal approach: Median of Medians ensures O(n) worst-case performance. 

 
Why groups of 5? 
​ When dividing the input into groups, choosing an odd-sized group (like 5) proves to 
be more efficient than an even-sized group.  
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Choosing groups of 5 in the Median of Medians algorithm ensures efficient trimming and 
sorting. Even-sized groups require extra computations to determine the median, leading to 
inefficiencies. For instance, when n = 3, sorting n/3 elements and keeping 2n/3 for recursion 
results in no effective trimming. The sorting cost, given by O(n log k), increases as k grows, 
making larger groups less efficient. Empirical data shows that for n = 1000, the sorting cost 
is 2321.92 for k = 5 but rises significantly for larger values. Thus, choosing 5 as the group 
size ensures optimal balance between sorting efficiency and element elimination, achieving 
an O(n) worst-case time complexity. 
 
The amount of data trimmed every-time is atleast  
3 x  [[n/5]/2]= (3/2) x [n/5]  ≤ 3/2 x [( n-4)/5] 
 
Length of the new data 
n-3/2 x [(n-4)/5] = 0.7n + 1.2 
 
T(n) = O(n) + T(n/5) + T(0.7n +1.2), Here c1·n = n/5 , c2·n = 0.7n + 1.2 
= cn(1/(1-⅕-¾) = 20cn 
 
The recurrence relation is given by 
T(n) = T(c1n)+T(c2n) + bn  
        ≤ Kc1n+Kc2n + bn  ≤ Kn 
            
The solution to this recurrence relation is  
​ K ≥ b/(1-c1-c2) (when c1 = .75 and c2 = .2 then → k ≥ 20b 
 
 
 
2. Closest pair algorithm: 
Def: Given a set of n points in a plane, the goal is to find the pair of points (p1, p2) that have 
the smallest euclidean distance, defined as  
​ ​ d(p1,p2) = √(x1-x2)2+(y1-y2)2 
Naive approach computes the distances between all the pairs, taking O(n2) time. Instead 
divide and conquer approach can solve problem efficiently in 𝛩(nlogn) time which is optimal 
solution. 
 
Divide and conquer approach: 

1.​ Sort the points by the increasing x coordinates  
2.​ Divide the set into two equal halves S1 (left) and S2 (right) using the vertical dividing 

line L 
3.​ Recursively compute the smallest distances δ� in S� and δᵣ in Sᵣ. 
4.​ Merge Step (Key Optimization): Compute δ', the smallest separation between a point 

in S� and a point in Sᵣ. 
5.​ Final Result: The overall closest pair distance δ = min(δ�, δᵣ, δ'). 

 
Efficient merge step: 

1.​ A naive O(n²) pairwise comparison would be inefficient. Instead, only points within 
distance δ from L need to be checked. 
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2.​ These points lie within a δ × 2δ strip, forming at most 8 critical points (4 from each 
side). 

3.​ Sorting these points by y-coordinate allows checking only the 7 closest neighbors, 
reducing comparisons significantly. 

 
 

 
Illustration of combine step 
 

 
Further Illustration of the combine step 
 
Time Complexity: 

 
𝛩(n) is attained by the mergesort algorithm, where sorting is every recursion is replaced by 
merging.  
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Pseudo code:  
Input: A set S of n points in the plane. 
Output: The minimum separation realized by two points in S. 
1. Sort the points in S in nondecreasing order of their x-coordinates. 
2. (δ, Y )← cp(1, n) 
3. return δ 
Procedure cp(low , high) 
1. if high− low + 1 ≤ 3 then 
2. compute δ by a straightforward method. 
3. Let Y contain the points in nondecreasing order of y-coordinates. 
4. else 
5. mid ← ⌊(low + high)/2⌋ 
6. x0 ← x(S[mid]) 
7. (δl , Yl)← cp(low, mid) 
8. (δr , Yr)← cp(mid + 1, high) 
9. δ← min{δl, δr } 
10. Y ← Merge Yl with Yr in nondecreasing order of y-coordinates. 
11. k← 0 
12. for i← 1 to |Y | {Extract T from Y } 
13. if |x(Y [i])− x0| ≤ δ then 
14. k← k + 1 
15. T[k]← Y [i] 
16. end if 
17. end for {k is the size of T} 
18. δ′ 
← 2δ {Initialize δ′ to any number greater than δ} 
19. for i← 1 to k− 1 {Compute δ′ } 
20. for j ← i + 1 to min{i + 7, k} 
21. if d(T[i], T[j]) < δ′ then δ′ 
← d(T[i], T[j]) 
22. end for 
23. end for 
24. δ← min{δ, δ′} 
25. end if 
26. return (δ,Y ) 
 
 
3. Convex Hull Algorithm: 

 
A set of point S for which the convex hull is calculated 
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 ​ ​ ​ Final convex hull  
The Graham scan algorithm is given by  

1.​ Select the y - coordinate with the lowest y- coordinate. Call it p0. 
2.​ Sort the points by the angle relative to the bottom most point and the 

horizontal. 
3.​ The coordinates are transformed such that  p0. 
4.​ Iterate in the sorted order, by placing each point on a stack but only if it 

makes a counter clockwise turn relative to the previous 2 points on the stack. 
5.​ Pop the previous point off the stack if it is making a clockwise turn. 

 
Time Complexity:  

The Graham Scan algorithm for finding the Convex Hull of n points sorts the points 
by their polar angle relative to the lowest point, which takes O(n log n) time. The main 
loop then processes each point once, pushing and popping from the stack at most 
O(n) times, leading to an O(n) operation. Since sorting dominates the complexity, the 
overall time complexity of the algorithm is O(n log n). This makes it efficient for 
computing the convex hull compared to brute-force approaches like Jarvis March 
(O(n²)). 
 

Pseudo code: 
1 Input: A set S of n points in the plane. 
2 Output: CH(S), the convex hull of S stored in a stack St. 
1. Let p0 be the rightmost point with minimum y-coordinate. 
2. T[0] ←p0 
3. Let T[1..n−1] be the points in S\{p0} sorted in increasing polar angle about p0. If two points pi 
and pj form the same angle with p0, then the one that is closer to p0 precedes the other in the 
ordering. 
4. push(St, T[n−1]); push(St, T[0]) 
5. k←1 
6. while k<n−1 
7. Let St= (T[n−1],...,T[i],T[j]), where T[j] is on top of the stack. 
8. if T[i],T[j],T[k] is a left turn then 
9. push(St, T[k]) 
10. k←k+ 1 
11. else pop(St) 
12. end i 
13. end while 
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4. Reductions: 

1.​ Purpose of reduction: Used to establish lower bounds for algorithmic problems by 
comparing their complexity. 

2.​ Transformation between problems: A problem A with a known lower bound Ω(f(n)) is 
transformed into another problem B to prove that B also has at least Ω(f(n)) 
complexity. 

3.​ Reduction process: 
○​ Step 1: convert an input of A into a valid input for B. 
○​ Step 2: Solve B. 
○​ Step 3: Convert the output of  B into a valid solution for A. 

4.​ Linear time reduction:  
○​ A linear reduction is written as A ∝� B, meaning A is reducible to B in O(n) 

time  
5.​ Significance: 

○​ Helps prove that if B could be solved faster than Ω(f(n)), then A would also be 
solved faster, contradicting its known lower bound. 

 
 
 
Dynamic Programming: 
Def: Dynamic Programming (DP) is an algorithm design technique used for solving 
combinatorial optimization problems by breaking them into overlapping subproblems and 
solving them bottom-up while storing intermediate results. Unlike Divide and Conquer, DP 
avoids redundant recursive calls by memoization (top-down) or tabulation (bottom-up). It is 
particularly useful for improving the efficiency of brute-force solutions to NP-hard problems, 
such as solving the Traveling Salesman Problem (TSP) in O(n²2ⁿ) time, compared to Θ(n!) 
with naive enumeration. 
 
5. Matrix Chain multiplication: 
Given a sequence of matrices, determine the most efficient way to parenthesize them to 
minimize the number of scalar multiplications. 
Our goal is to find the optimal multiplication order while keeping the matrix sequence unchanged. 

Computation Cost: 

For a matrix M₁ × M₂ × M₃ × M₄, different parenthesizations yield different computation costs: 

Parenthesization Computation Cost 

M₁(M₂(M₃M₄)) 8750 

M₁((M₂M₃)M₄) 55000 

(M₁M₂)(M₃M₄) 6500 

8 



(M₁(M₂M₃))M₄ 77500 

((M₁M₂)M₃)M₄ 10000 

 

Using brute-force, the number of ways to parenthesize j matrices grows as Ω(2ʲ), making exhaustive 
search impractical. Instead, DP optimally structures the computation. 

Exploration of recurrence structure: The recurrence structure for the matrix multiplication chain 
M₁,M₂,M₃,M₄ 

 

Recurrence Structure: 
For a matrix multiplication chain of 𝑛 matrices: 𝑀1𝑀2𝑀3……𝑀𝑛. Where a matrix 𝑀𝑝 
is of dimensions 𝑚𝑝−1 × 𝑚𝑝 for 𝑝=1,2,3,……𝑛. Let 𝐶[𝑖,𝑗] denote the computation 
cost of evaluating the chain 𝑀𝑖𝑀𝑖+1𝑀𝑖+2……𝑀𝑗 most efficiently. 
base conditions: 

●​ When 𝑖 > 𝑗 we have 𝐶[𝑖,𝑗] = 0 since the matrix production is not commutative. 
●​ When 𝑖= 𝑗, we have 𝐶[𝑖,𝑗]=0, since there is only one matrix in the chain 
●​ When 𝑖<𝑗, we have 𝐶[𝑖,𝑗]= min 𝑖≤𝑘<𝑗 (𝐶[𝑖,𝑘]+𝐶[𝑘+1,𝑗] + 𝑛𝑖−1 × 𝑛𝑘 × 𝑛𝑗) 

Therefore we have the following recurrence condition 
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Memoization in matrix chain multiplication can be applied using a recursive (top-down) 
approach, where 𝐶[𝑖,𝑗] calls 𝐶[𝑖,k]and C[k+1, j], partitioning the chain at k until the base case i 
= j is reached. The results are stored in a memoization table to prevent redundant 
computations. However, recursion can lead to high memory usage due to deep recursion 
stacks. To mitigate this, a bottom-up (iterative) approach is preferred, where subproblems 
are solved progressively without recursion. This avoids excessive function calls while 
ensuring optimal computation. For example, to compute C[1,4] in a four-matrix chain, the 
process follows structured evaluations based on previously computed subproblems. 

 

Example of memoization table is as follows: 

 

The algorithm processes O(n²) subproblems, each requiring O(n) computations, leading to a 
total time complexity of O(n³), which is significantly better than O(2ⁿ). The space complexity 
remains O(n²) due to storing intermediate results. This ensures an efficient solution for 
matrix chain multiplication. 
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Pseudo code for matrix multiplication: 

 

6. Longest Common subsequence problem (LCS)  

Def: The Longest Common Subsequence (LCS) problem is a combinatorial optimization 
problem that seeks to find the longest sequence of characters that appear in the same 
relative order in two given sequences but not necessarily consecutively. Given two 
sequences X (of length m) and Y (of length n), LCS aims to determine the maximum-length 
subsequence that is common to both. The problem exhibits optimal substructure and 
overlapping subproblems, making dynamic programming the preferred approach for solving 
it efficiently in O(mn) time. 

Given a sequences, X of length m and Y of length n, find the longest subsequence common 
to both X and Y. 

Our goal is to determine the max. length of a common subsequence between the two 
sequences using dynamic programming to minimize the computational cost. 

Naive Approach: 

To find the LCS of sequences X and Y, a naïve approach iterates through each element of X 
and searches for it in Y. This results in a brute-force method with a time complexity of O(n²). 
Due to redundant computations, this approach is inefficient for large inputs. 

Improving the solution so that optimality is increased 

If xₘ = yₙ, then LCS length is LCS(Xₘ₋₁, Yₙ₋₁) + 1; otherwise, it is the maximum of 
LCS(Xₘ₋₁, Y) and LCS(X, Yₙ₋₁). This demonstrates overlapping subproblems, as finding 
LCS(Xₘ₋₁, Y) and LCS(X, Yₙ₋₁) both rely on LCS(Xₘ₋₁, Yₙ₋₁). Define L[i, j] as the LCS length 
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of prefixes X₁...Xᵢ and Y₁...Yⱼ, with the base case L[i, 0] = L[0, j] = 0 when either sequence is 
empty. This forms the basis for dynamic programming in solving the LCS problem efficiently. 

 

If xₘ = yₙ, then LCS(Xₘ₋₁, Yₙ₋₁) + 1 gives the LCS length; otherwise, it is the maximum of 
LCS(Xₘ₋₁, Y) and LCS(X, Yₙ₋₁). This shows overlapping subproblems, as both depend on 
LCS(Xₘ₋₁, Yₙ₋₁). We define L[i, j] as the LCS length of prefixes X₁...Xᵢ and Y₁...Yⱼ, with the 
base case L[i, 0] = L[0, j] = 0 when one sequence is empty. The problem can be solved 
recursively using memoization, but recursion increases memory usage. Instead, a bottom-up 
iterative approach is more efficient, reducing redundant calculations and making dynamic 
programming the preferred method for solving LCS. 

Given X = <Y, E, L, L, O, W> and Y = <H, E, L, L, O>, the LCS is <E, L, L, O>. We compute 
L[6,5] iteratively, starting with L[0,0] = 0 and setting the first row and column to 0 since an 
empty sequence has no LCS. Since X₁ ≠ Y₁, we set L[1,1] = 0 and continue filling the table 
based on matches and previous values. The final value L[6,5] = 4 gives the LCS length. To 
extract the sequence, we trace back from L[6,5] to L[0,0], following the path where values 
increased, revealing LCS = <E, L, L, O> 
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Pseudo code: 

 

 
 

7. Edit distance problem: 
Def: The Edit Distance Problem (or Levenshtein Distance) is a string similarity problem that 
measures the minimum number of operations required to convert one string into another. 
The allowed operations are: 

1.​ Insertion (adding a character), 
2.​ Deletion (removing a character), and 
3.​ Substitution (replacing one character with another). 

Given two strings X (length m) and Y (length n), the goal is to compute the minimum number 
of edits needed to transform X into Y. The problem exhibits optimal substructure and 
overlapping subproblems, making dynamic programming the preferred approach, with a time 
complexity of O(mn). 

Two strings S1 (X) and S2 (Y), the goal is to transform S1 into S2 using the following three 
operations at minimal cost: 

1.​ Deletion: Remove a character from S1. 
2.​ Substitution: Replace a character in S1 with another. 
3.​ Insertion: Add a character to S1. 

Each operation has an associated cost, and the objective is to minimize the total cost 
required for the conversion. 
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Recursive Solution for Edit Distance Problem 

 

Time complexity: This recursive solution has an exponential time complexity of O(3ⁿ) due to 
repeated subproblems, making it inefficient for large strings. To optimize it, memoization 
(top-down DP) or bottom-up DP can be used. 

Pseudocode for the edit distance problem: 

def EditDistanceRecursive(s1,s2,m,n) 

​ if m==0: 

​ ​ return n 

​ if n==0: 

​ ​ return m 

​ if s1[m-1] ==s2[n-1]: 

​ ​ return EditDistanceRecursive(s1,s2,m-1,n-1) 

​ insert = EditDistanceRecursive(s1,s2,m,n-1) 

​ remove = EditDistanceRecursive(s1,s2,m-1,n) 

​ replace = EditDistanceRecursive(s1,s2,m-1,n-1) 
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​ return 1+min(insert,remove,replace) 

#Example usage 

s1 = "horse"  

s2 = "ros"  

print("Minimum Edit Distance:", EditDistanceRecursive(s1, s2, len(s1), len(s2))) 

8. Knapsack (0,1) problem: 

Problem statement:  

The Knapsack Problem involves selecting the most valuable items that can be carried in a 
knapsack with a maximum capacity of C. Given n items, each item i has a volume vᵢ and a 
value wᵢ, both as integers. The goal is to determine which subset of items to take so that the 
total value is maximized while ensuring that the total volume does not exceed C. The 
constraint is that each item must be fully included or excluded—it cannot be taken partially. 
Thus, the total volume and value will increase by vᵢ and wᵢ if an item is chosen or remain 
unchanged if it is not.  

Solution: 

A 2D table can be constructed to store values progressively, solving the Knapsack Problem 
in O(n * W) time, where n is the number of items and W is the knapsack capacity. Since only 
n * W values need to be computed, this approach ensures efficient computation. 

Let K[i, n] represent the maximum value obtained using the first i items for a knapsack of 
capacity n. The table is computed as follows: 

●​ If item i is included: K[i,n]=wi+K[i−1,n−vi]K[i, n] = wᵢ + K[i - 1, n - 
vᵢ]K[i,n]=wi​+K[i−1,n−vi​] 

●​ If item i is excluded: K[i,n]=K[i−1,n]K[i, n] = K[i - 1, n]K[i,n]=K[i−1,n] 
●​ The table is then filled iteratively, ensuring each entry stores the maximum possible 

value. 

Example: 

Given items with values w = {1, 4, 5, 7} and volumes v = {1, 3, 4, 5}, for a knapsack of 
capacity 7, we construct a table with (n+1) rows and (W+1) columns. 

1.​ Initialize the first row with zero since no items result in zero value. 
2.​ Iterate through the items and capacities, updating each entry to store the maximum 

obtainable value. 
3.​ The final result is found in the bottom-right corner of the table, where K[n, W] = 9, 

indicating the maximum value that can be obtained while filling the knapsack to 
capacity 7. 
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Time complexity : O(n*c) 

Space complexity : O(n*c) 

Pseudo code of knapsack algorithm: 

 

9. String Matching: 

String Matching is the problem of finding one or more occurrences of a pattern (P) of length 
m within a text (T) of length n, where m ≤ n. The goal is to determine all positions (valid shifts 
s) in T where P appears as a contiguous substring. 

Formally, a valid match occurs at shift s if: 

T[s+1...s+m]=P[1...m]T[s+1 ... s+m] = P[1 ... m]T[s+1...s+m]=P[1...m] 

meaning that each character of P aligns exactly with a corresponding substring in T. 
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String Matching Algorithms, such as Naive Search, Knuth-Morris-Pratt (KMP), Rabin-Karp, 
and Boyer-Moore, optimize this search process based on different techniques 

 

We can also find the max overlap of the pattern with respect to the pattern starting point 
present in the text. Among their many other applications, string matching algorithms search 
for particular patterns in the DNA sequences. Internet search engines also use them to find 
the web pages relevant to queries. 

Initial Solution: 

The naive string-matching algorithm checks for all possible shifts by iterating through the      
n - m + 1 positions in the text T. For each shift s, it verifies whether the pattern P[1...m] 
matches the substring T[s+1...s+m]. This brute-force approach ensures that all valid shifts 
are identified. 

Algorithm:  

string_match1(T,P){ 

n=|T| 

m=|P| 

s=0 

for s=0 to n-m 

​ if P[1….m] == T[s+1…….s+m] 

​ ​ print “pattern occurs with shift:”s 

} 

The program slides through the text T to find a pattern P to check each shift is valid or invalid. 
Here in the below example it is found after 2 shifts. 

 
The naive string-matching algorithm is inefficient because it does not use any information from 
previous checks when moving to the next position. This leads to unnecessary comparisons. For 
example, if P = "aaab" matches at s = 0, then shifts 1, 2, and 3 cannot be valid if T[4] ≠ 'b'. More 
efficient algorithms use this information to skip unnecessary checks and improve performance. 
Time complexity: O(mn) 
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Solution refinement: (The Knuth-morris-pratt algorithm): 

Before solving the problem, let’s understand the concept of the "border of a string", which helps in 
optimizing pattern matching. 

A border of a string is a prefix that is also a suffix, but it cannot be the entire string. For example, in 
"abcababcab", the borders are "ab" and "abcab". In "abacabab", the border is "ab", so its border length 
is 2. 

This concept helps in skipping unnecessary comparisons when a mismatch occurs in pattern matching. 
Instead of checking every shift, we can jump directly to the suffix position of the pattern, avoiding 
invalid shifts. 

The border prefix function (b) keeps track of how the pattern matches itself at different shifts. This 
allows us to avoid redundant checks while searching in the text. 

For example, consider the pattern P = "ababaca" being matched against a text T. If the first 5 
characters match but the 6th character does not, we already know that the next shift (s + 1) is invalid. 
Instead of shifting by one, we use border information to jump further (s + 2), aligning only the 
necessary part of the pattern with the text. 

This technique is used in efficient pattern-matching algorithms like Knuth-Morris-Pratt (KMP) to 
reduce unnecessary comparisons. 

 

In general, it is useful to know the answer to the question. Given that pattern characters P[1…q] 
match text characters T[s+....s+q], what is the least shift s’ >s such that for some k<q 

 

 

 

 

 

 

 

18 



Pseudo Code: 

 

Time Complexity: O(m+n) 

Space complexity: O(m) 
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