

1

Fundamentals of Algorithm Design and Machine Learning

Name : Chimala Rohith Chandra Date : 23-01-2025
Roll no : 24BM6JP15 Lecture slot : 08:00 hrs to 08:55 hrs
Professor Name : Aritra Hazra

===

●​ Dynamic Programming:

Dynamic programming, like the divide-and-conquer paradigm, solves problems by combining
the solutions to subproblems. As we saw in previous classes, divide-and-conquer algorithms
partition the problem into disjoint subproblems, solve the subproblems recursively, and then
combine their solutions to solve the original problem. In contrast, dynamic programming
applies when the subproblems overlap or are repetitive, that is, when subproblems share
sub-subproblems. In this context, a divide-and-conquer algorithm does more work than
necessary, repeatedly solving the common sub subproblems. A dynamic-programming
algorithm solves each sub sub problem just once and then saves its answer in a table, thereby
avoiding the work of recomputing the answer every time it solves each sub subproblem.

The following are some problems in which dynamic programming is used to solve it in an
optimal way.

1.​ Matrix chain multiplication:

Problem:
Given the matrix multiplication chain of ‘j’ matrices, M1M2M3......Mj. Find out the most
efficient way to group the matrices that minimizes the total number of scalar multiplications.

Solution:
For a matrix multiplication chain of n matrices: M1M2M3......Mj. Where a matrix Mp is of
dimensions mp−1 × mp for p = 1, 2, 3, n. Let C[i,j] denote the computation cost of
evaluating the chain MiMi+1Mi+2 Mj most efficiently.

 0 if i > j (base)

 C[i,j]= 0 if i = j (base)

 min { (C[i, k] + C[k + 1, j] + ni−1 × nk × nj) } if i < j
 i≤k<j

https://cse.iitkgp.ac.in/~aritrah/course/theory/FADML/Spring2025/#examination
http://cse.iitkgp.ac.in/~aritrah/

2

To demonstrate how this recursion works, let us consider the example of a matrix
multiplication chain of four matrices M1M2M3M4. Our objective is to evaluate C[1,4].
Consider,

Notice that for computing C[1,3] we need values of only C[1,1], C[2,3], C[1,3] and C[3,3].
Similarly, for computing C[2,4], we need values of only C[2,2], C[3,4], C[2,3] and C[4,4], and
so on and so forth. We can generalise from this observation that for computing any C[i,j] we
need values from the jth row and ith column. Hence, we can fill the table iteratively, starting
from the diagonal and approaching the left-down corner.

Time complexity:
Since there are O(n2) values to be filled i.e subproblems, and for each subproblem, O(n)
possible values of k. Hence, the time complexity of the algorithm is O(n3).

Space complexity:
And total space complexity is O(n2).

3

2.​ Longest Common Subsequence (LCS) Problem:
Problem Statement:
Given two sequences, X of length m and Y of length n, find the longest subsequence common
to both X and Y. Find the maximum length of a common subsequence between the two
sequences.

Solution:
We need to find the LCS of L1 = < L1[1], L1[2], L1[3],....L1[m] > and L2 = < L2[1], L2[2],
L2[3],....L2[n] >. A naïve approach as an initial solution would be to search for every element
of L1 iteratively in L2. This would yield us time complexity of O(n2).

Refined solution:
Let L[i, j] be the length of LCS of L1[i] and L2[j] where i = 0,1,2,3,....m and j = 0,1,2,3,....n.
The base case is if either of i and j is 0, i.e. one of the sequences has length 0, then LCS would
also be 0. Therefore, we have,

The problem can be either solved recursively where each L[i, j] iteratively calls L[i, j-1] and
L[i-1, j] until a base case is reached, then the solutions to subproblems are recombined from
bottom to top and the results are stored in the memoization table.

Consider the example where X = <Y, E, L, L, O, W> and Y = <H, E, L, L, O>. As we can see
that LCS is <E, L, L, O>. Consider the memoization table for L[i, j] . We aim to evaluate
L[6,5] and find out the LCS. We can do this iteratively by starting with L[0,0] = L[0,:] = L[:,0]
= 0. Since x1 ≠ y1, L[1,1] would be the maximum of L[0,1] and L[1,0] which is 0. Similarly,
we have L[:, 1] = L[1,:] = 0 since ‘H’ from sequence Y is not in sequence X and ‘Y’ from
sequence X is not in sequence Y. L[2,1] = 0 since <Y, E> doesn't have any common sequence
with <H>. Similarly, we can fill the rest of the table either row-wise or column-wise.
As we can see from the table, L[6,5] = 4;
hence, the length of LCS of X = <Y, E, L,
L,O, W> and Y = <H, E, L, L, O> is 4.
To find LCS, we need to find the indices i
and j where the increment occurred. This
can be done by moving backwards from
L[6,5] towards L[0,0] by following the
direction where the increment occurred (as
shown by the red arrow). Hence, we can see
that the LCS is <E, L, L, O>.
Time & space complexity : O(n2)

4

3.​ Edit distances problem:
Problem Statement:
Given two strings ‘L1’ and ‘L2’. L1 is to be converted to L2 using the following 3 operations:
Deletion of a character.
Substitution of a character with another one.
Insertion of a character.
Each operation has a cost corresponding to it and the aim is to carry out the conversion of
string in minimum possible cost.
Taking an example of conversion of string ‘HELLO’(source) to ‘YELLOW’(target). Our aim
is to find the minimum cost path for the same. Let the cost for each operation be as following:
Insertion: +1
Deletion: +1
Substitution: +2
Table is initialized with dimensions (n+1) * (m+1), where n is the length of the source and m is
the length of the target. First row represents conversion of an empty string to target string and
the first column represents conversion of source string to an empty target string. First column
and first row will be updated as following:
For the first row, since we are converting an empty string to target string, each character will
be inserted, hence cost will be the cost of insertion of each character.
For first column since we are converting source to an empty string, each character will have to
be deleted, hence the cost will be the deletion cost of each character

Solution:
If L1[i] matches L2[j], no transformation is to
be performed and cost is carried over from the
previous diagonal cell.
No operation (Nop) : D[i,j] = D[i-1,j-1], if
L1[i] = L2[j]
If L1[i] is different from L1[j], there are three
possible options and minimum cost is
computed :
if L1[i] ≠ L2[j]
Deletion from the source: D[i-1, j] + 1
Insertion into the target: D[i, j-1] + 1
Substitution: D[i-1, j-1] + 2
From this we need to find the minimum cost to reach D[i,j]
Final solution is given by the bottom-right cell. Which in this case depicts that the minimum
edit distance between HELLO and YELLOW, which is D[5,6] = 3

Time complexity : O(n*m)
Space complexity : O(n*m)

5

4.​ 0-1 knapsack problem:
Problem Statement:
How to take the most valuable items that can be carried in a knapsack capable of carrying at
most C items. One can choose to take any subset of n items in the store. The ith item is of
volume vi and wealth value wi, where vi and wi are integers. How many items should be taken?
Constraint here is that we can either put an item set completely in the bag or cannot put it at
all, that is, the volume and value from ith element will either increase by vi and wi respectively
or none at all.

Solution:
A 2D table can be created in which all values can be stored progressively. Time complexity for
which can be obtained recursively as 𝑶(𝒏*𝑾)where n is the number of items in knapsack and
W is its capacity. As there are only n*W values to be calculated.
Let K[I, n] denote the maximum value of the items taken from a set of items of value denoted
by i, by a knapsack of capacity n.
 K[I, n] is computed based on the selection of i th item of value wi

If the item is taken then K[I, n] = wi + K[I-{wi}, n-vi]
If the item is not taken K[I, n] = 0 + K[I-{wi}, n-vi]
And these values are stored in a table. And then select the maximum value from the table

Taking an example where: Wealth value, w = {1, 4, 5, 7},volume , v = {1, 3, 4, 5},The
knapsack capacity is 7
Build a table where each entry K[i, n] will represent the maximum value that can be obtained
using the first i items for a knapsack of capacity c. We start by creating a table with (n+1) rows
and (c+1) rows.
Initially, the first row is filled with zero as no item gives zero value. Then, iterate through the
items and the capacities, filling the table with maximum possible values.
Results can be obtained from the bottom right corner of the table where the value is 9 and
knapsack is filled at its capacity 7.

Time complexity : O(n*c)
Space complexity : O(n*c)

6

5.​ String matching :
We assume that the text is an array T [1….n] of length n and that the pattern is an array
P[1..m] of length m(where m < n).

Let say that pattern P occurs with shift s in text T (pattern P occurs beginning at position s + 1
in text T) if 0 ≤ s ≤ n-m and T [s+1…s+ m]= P [1…m] (that is, if T[s+ j]= P[j] , for 1 ≤ j ≤
m). If P occurs with shift s in T , then we call s a valid shift; otherwise, we call s an invalid
shift. The string-matching problem is the problem of finding all valid shifts with which a given
pattern P occurs in a given text T .

We can also find the maximum overlap of the pattern with respect to the pattern starting point
present in the text
Among their many other applications, string-matching algorithms search for particular patterns
in DNA sequences. Internet search engines also use them to find Web pages relevant to
queries.

Initial solution:
The naive algorithm finds all valid shifts using a loop that checks the condition
P [1…m] = T[s+1…s+m] for each of the n -m+1 possible values of s.

Algorithm:
String_match1(T,P){
n = |T|
m = |P|
s=0
for s = 0 to n-m
 If P [1…m]==T[s+1…s+m]
 Print “pattern occurs with shift :” s
}

The program slides through the text T to find a pattern P to check each shift is valid or invalid.
Here in the below example it is found after 2 shifts.

7

The naive string-matcher is inefficient because it entirely ignores information gained about the
text for one value of s when it considers other values of s. Such information can be quite
valuable, however. For example, if P = aaab and we find that s = 0 is valid, then none of the
shifts 1, 2, or 3 are valid, since T [4] = b. In the following sections, we examine several ways
to make effective use of this sort of information

Time complexity : O(nm)

Solution Refinement: (The Knuth-Morris-Pratt algorithm)
Before taking a leap into the solution lets take a step back to understand a concept - ‘border of
a string’, which helps us to jump to an optimal position.
A border of a string is a prefix that is also a suffix of the string but not the whole string. For
example, the borders of abcababcab are ab and abcab. Border of abacabab is ab say the border
is 2.
We can use this concept to conveniently shift to the suffix positions of the pattern, when the
pattern doesn’t match with the text at a particular position during the valid shift checking.
The border prefix function b for a pattern incorporates knowledge about how the pattern
matches against shifts of itself. We can take advantage of this information to avoid testing
useless shifts in the initial solution of the pattern-matching algorithm.

The below figure shows a particular shift s of a template containing the pattern P = ababaca
against a text T . For this example, q = 5 of the characters have matched successfully, but the
6th pattern character fails to match the corresponding text character. The information that q
characters have matched successfully determines the corresponding text characters. Knowing
these q text characters allows us to determine immediately that certain shifts are invalid. In the
example of the figure, the shift s + 1 is necessarily invalid, since the first pattern character

(a) would be aligned with a text character that we know does not match the first pattern
character, but does match the second pattern character
(b). The shift s’ = s + 2 shown in the figure, however, aligns the first three pattern characters
with three text characters that must necessarily match.

In general, it is useful to know the answer to the question. Given that pattern characters P [1..
q] match text characters T [s+...s+q], what is the least shift s’ > s. such that for some k<q

 i
 P[i]

 b[i]
 We can precompute the necessary information by comparing the pattern against itself, as per
the above figure demonstrates

8

Algorithm:
border_prefix(P){ //P is the pattern text in array
m = |P|
Let b[1…m] be an array
b[1]=0
j=0
for i = 2 to m{
 while P[j+1] != P[i] and j>0
 j=b[j]
 If b[j+1]== b[i]
 j=j+1
 b[q] = j
}

String_match2(T,P){
n = |T|
m = |P|
b = border_prefix(P)
q=0 // number of characters matched
for k = 1 to n { // scan the text from left to right
 while q>0 and P [q +1] != T [k]
 q = b[q] // next character does not match
 if P[q+1] == T[i]
 q=q+1 // next character matches
 if q == m { // check if all of P matched?
 print “Pattern occurs with shift :” k-m
 q = b[q] }} // look for the next match
}

Time complexity : O(n+m)
Space complexity : O(m)

===

9

References:

●​ Thomas H. Cormen, Charles E. Lieserson, Ronald L. Rivest and Clifford Stein, Introduction to
Algorithms

●​ Scribe notes of 23BM6JP13_2025-01-21
●​ Scribe notes of 23BM6JP14_2025-01-21

===

https://drive.google.com/file/d/12SpPGn0MBS392RXLkgU64OEbyHjy4C9s

