
 

DYNAMIC PROGRAMMING SCRIBE 
21st January 2025, Second Half 

 
  

BHAVYA ARYA 
24BM6JP14 



Dynamic programming 
Dynamic programming, like the divide-and-conquer method solves problems by combining the 
solutions to sub-problems. Whereas the Divide and conquer algorithms partition the problem into 
disjoint sub-problems (Decomposition), which are then solved recursively, and then combine their 
solutions (Recomposition) to solve the original problem. In contrast, Dynamic programming applies 
when the subproblems overlap, that is, when we have multiple identical subproblems to be solved. 
Dynamic programming algorithm solves each sub-problem just once and then saves its solution 
through memoization which is a dynamic programming technique that stores the results of expensive 
function calls in a data structures like arrays and tables to avoid redundant calculations. Dynamic 
programming typically applies to problems such as optimization, where multiple solutions are possible 
and need to be adjudged 
 To develop a dynamic-programming algorithm, follow a sequence of four steps:  
• Characterize the structure of an optimal solution  
• Recursively deduce the value of an optimal solution 
• Compute the value of an optimal solution, typically in a bottom-up fashion.  
• Construct an optimal solution from computed information 

Edit Distance problem 
Problem Statement:  
Given two strings ‘S1’ and ‘S2’. S1 is to be converted to S2 using following 3 operations:  
• Deletion of a character. 
• Substitution of a character with another one. 
• Insertion of a character. 
Each operation has a cost corresponding to it and the aim is carry out conversion of string in minimum 
possible cost. 
Recursive Solution: 
Initial idea is to process all characters one by one, traversing from either end. Each character has two 
options, either they match or they don’t match. If they match we move to the next string, if they don’t, 
we apply all three options and move to the next and recursively formulate for all possible 
transformations, from this the path with minimum cost is calculated and final solution is obtained 
FUNCTION EditDistanceRecursive(s1, s2, m, n): # m = len(s1), n=len(s2) 

    # Base Cases , if either S1, S2 is empty, add all from  S2 or remove all from s1 respectively 

    IF m == 0:                     

        RETURN n 

    IF n == 0:  

        RETURN m     # If last characters are the same 

    IF s1[m - 1] == s2[n - 1]: 

        RETURN EditDistanceRecursive(s1, s2, m - 1, n - 1) 

  # If last characters are different, calculate the min of the three  

    INSERT = EditDistanceRecursive(s1, s2, m, n - 1) 

    REMOVE = EditDistanceRecursive(s1, s2, m - 1, n) 

    REPLACE = EditDistanceRecursive(s1, s2, m - 1, n - 1) 

    RETURN 1 + MIN(INSERT, REMOVE, REPLACE) 

Time complexity for this can be obtained recursively as each problem divides into 3 sub-problems 
𝑂(3𝑛) 



Memoization Solution (Table Approach) 
Taking an example of conversion of string ‘HELLO’(source)  to ‘YELLOW’(target). Our aim is to find the 
minimum cost path for the same. Let the cost for each operation be as following: 
• Insertion: +1 
• Deletion: +1 
• Substitution: +2 
Table is initialized with dimensions (n+1) * (m+1), where n is 
length of the source and m is length of the  
target. First row represent conversion of an empty string to 
target string and first column represent conversion of source 
string to an empty target string. First column and first row will 
be updated as following: 
• For first row, since we are converting an empty string to 

target string, each character will be inserted, hence cost 
will be the cost of insertion of each character. 

• For first column since we are converting source to an 
empty string, each character will have to be deleted, 
hence the cost will be the deletion cost of each character 

 
Step-1: conversion of ‘HE’ to ‘YE’: 

 Insert E from YE 
 Delete E from HE 
 Substitute E 

 
General Formula: At each cell (i, j) in the table: 
• If S1[i] matched S2[j], no transformation is to be 

performed and cost is carried over from previous 
diagonal cell. 

• If S1[i] is different from S2[j], there are three possible 
options and minimum cost is computed : 

o Deletion from the source: dp[i-1][j] + deletion cost 
o Insertion into the target: dp[i][j-1] + insertion cost 
o Substitution: dp[i-1][j-1] + substitution cost 

Final solution is given by te bottom-right cell. Which in this 
case depicts that the minimum edit distance between 
HELLO and YELLOW, which is dp[5][6] = 3 
Each cell in the table represents the minimum transformation cost for conversion of one string to 
another using the specified transformations and corresponding costs). Each cell takes constant time, 
hence the time complexity is O(m*n) 
 

 

 

 
0 Y E L L O W 

0 0 1 2 3 4 5 6 

H 1             

E 2             

L 3             

L 4             

O 5             

 
0 Y E L L O W 

0 0 1 2 3 4 5 6 

H 1 2 3          

E 2  3 2          

L 3             

L 4             

O 5             

 
0 Y E L L O W 

0 0 1 2 3 4 5 6 

H 1 2 3 4 5 6 7 

E 2 3 2 3 4 5 6 

L 3 4 3 2 3 4 5 

L 4 5 4 3 2 3 4 

O 5 6 5 4 3 2 3 



Knapsack (0,1) problem 
Problem Statement 
A thief robbing a store wants to take the most valuable load that can be carried in a knapsack capable 
of carrying at most W pounds of loot. The thief can choose to take any subset of n items in the store. 

The ith item is worth vi dollars and weighs wi pounds, where vi and wi are integers. Which items should 
the thief take? 
Constraint here is that we can either put an item completely in the bag or cannot put it at all, that is, the 

value and weight from ith element will either increase by vi and wi respectively or none at all. 

Recursion Approach 
Simplest solution is to consider all possible subsets having weight less than W, and find the subset with 
highest total value. One of the possible ways of solving this is through recursion following an inclusion-
exclusion approach, where each item is either selected or not selected progressively to find the total 
value of items and then the one with maximum value is obtained during recomposition. 
FUNCTION Knapsack(weights, values, n, W) 

   IF n == 0 OR W == 0: 

        RETURN 0 

    EXCLUDE = Knapsack(weights, values, n - 1, W)   

    IF weights[n - 1] <= W: 

        INCLUDE = Knapsack(weights, values + vn-1, n - 1, W - weights[n - 1]) 

    ELSE: 

        INCLUDE = 0 

    RETURN MAX(INCLUDE, EXCLUDE) 

Time complexity for this can be obtained recursively as: 
𝑇(𝑛) = 2𝑇(𝑛 − 1) + 1 = 𝑂(2𝑛)  

But this can be improved if use memoization approach, where we keep on saving the identical sub-
problems and avoiding redundant calculations.  

Memoization Approach   
For memorization approach, a 2D table can be created in which all values can be stored progressively. 
Time complexity for which can be obtained recursively as 𝑶(𝒏. 𝑾)where n is the number of items in 
knapsack and W is its capacity. As there are only n.W values to be calculated. 

Taking an example where:  
Value, v = {1, 4, 5, 7} 
Weights , w = {1, 3, 4, 5}  
The knapsack capacity is 7 

The idea is to build a table(dp) where each 
entry dp[i][w] will represent the maximum 
value that can be obtained using the first i items for a knapsack of capacity w. We start by creating a 
table with (n+1) rows and (W+1) rows. Initially, first row is filled with zero as no item gives zero value. 
Then, iterate through the items and the capacities, filling the table with maximum possible values. For 
each item i: 
For each capacity w (from 1 to the total knapsack capacity), check if including the item gives a better 
value than excluding it.  
 

Items \ Capacity 0 1 2 3 4 5 6 7 
0 items 0 0 0 0 0 0 0 0 
1 item (W=1, V=1)                 
2 item (W=3, V=4)                 
3 item (W=4, V=5)                 
4 item (W=5, V=7)                 



Iterations: 

• Adding 1st item: 
 Single value, therefore, it will give highest 
value as there is no other option 

• Adding 2nd item: 
o At capacity =  3, adding Item 2 gives a value of 4, higher than previous value of 1. 
o At capacity =  4, adding Item 2 and item 1 together, gives a value of 5. Similarly for capacity 5,6,7 

max values is 5 when both are added 

• Adding 3rd item: 
o At capacity = 4, adding Item 3 only 

gives value 5, which same as previous 
o For capacity = 5,6 Item 3 along with 

item 1 gives a higher value. 
o For capacity = 7, item 3 long with item 

7 gives a higher value. 

Similarly, adding final item, will give the following result, 

Results can be obtained form the bottom 
right corner of the table where the value is 
9 and knapsack is filled at its capacity 7.  

 

2D Water Logging Problem (Homework Problem) 
Problem Statement 
n non-negative integers representing an elevation map where the width of each bar is 1, compute how 
much water it can trap after raining ? 

Possible solutions: 
https://www.geeksforgeeks.org/trapping-rain-water/ 

References: 
o Edit Distance  as on 21st Jan 25: https://www.geeksforgeeks.org/edit-distance-dp-5/ 
o 0/1 Knapsack problem as on 21st Jan 25: https://www.geeksforgeeks.org/0-1-knapsack-

problem-dp-10/ 
o Thomas H. Cormen, Charles E. Lieserson, Ronald L. Rivest and Clifford Stein, Introduction to 

Algorithms 

 

Items \ Capacity 0 1 2 3 4 5 6 7 
0 item 0 0 0 0 0 0 0 0 
1 item (W=1, V=1) 0 1 1 1 1 1 1 1 
2 item (W=3, V=4) 0 1 1 4 5 5 5 5 
3 item (W=4, V=5)         

4 item (W=5, V=7)        
 

Items \ Capacity 0 1 2 3 4 5 6 7 
0 item 0 0 0 0 0 0 0 0 
1 item (W=1, V=1) 0 1 1 1 1 1 1 1 
2 item (W=3, V=4) 0 1 1 4 5 5 5 5 
3 item (W=4, V=5) 0 1 1 4 5 6 6 9 
4 item (W=5, V=7)        

 

Items \ Capacity 0 1 2 3 4 5 6 7 
0 item 0 0 0 0 0 0 0 0 
1 item (W=1, V=1) 0 1 1 1 1 1 1 1 
2 item (W=3, V=4) 0 1 1 4 5 5 5 5 
3 item (W=4, V=5) 0 1 1 4 5 6 6 9 
4 item (W=5, V=7) 0 1 1 4 5 7 8 9 

https://www.geeksforgeeks.org/edit-distance-dp-5/
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/

