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Algorithm Design Principle 

Step 1. Initial Solution 

a. Recursive Formulation 

b. Correctness 

c. Complexity Analysis 

Step 2. Exploration of Structure 

a. Decomposition 

b. Analyse recursive structure 

c. Re-composition 

Step 3. Solution Refinement 

a. Balance/split 

b. Analysis of recurrence 

c. Identical subproblems (overlapping substructure) 

Step 4. Data structuring and Complexity 

a. Reuse memory/saved info (memorization) 

b. Analysis of space complexity 

Step 5. Final solution 

a. Traversal of recursive struct 

b. Complexity 

c. Pruning/backtracking 

Step 6. Implementation 

Algorithm Paradigms 

1. Divide and conquer 

2. Dynamic programming 

3. Greedy approach 

4. Branch and bound 

5. Combinatorial optimisation 

6. Approximation 

7. Randomisation 

Problems Discussed 

1. Max 2. Max and 

Min 

3. Max and 2nd 

Max 

4. Sort 

(tournament) 

5. Coin 

exchange 

6. Searching 7. Sorting 8. Fibonacci 9. Median Finding 10. Closest pair 
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Dynamic Programming  

Dynamic programming (DP) is required to solve problems that exhibit overlapping 

subproblems and optimal substructure. It works by breaking a problem into smaller 

subproblems, solving each just once, and storing their results to avoid redundant 

calculations. Unlike the divide and conquer paradigm, which solves each subproblem 

independently, DP reuses solutions to overlapping subproblems, making it more efficient. 

Memoization is incorporated in DP by storing intermediate results in a data structure and 

retrieving them when needed, significantly reducing time complexity. 

Matrix Chain Multiplication Problem 

Problem Statement: 

Given the matrix multiplication chain of 𝑗 matrices, 𝑀1𝑀2𝑀3……𝑀𝑗 , find out the most 

efficient way to group the matrices (by parenthesization) that minimizes the total 

number of scalar multiplications. 

Goal: 

To determine the optimal order of matrix multiplication while keeping the sequence of 

matrices unchanged (since matrix multiplication is not commutative) to minimize 

computational cost. 

Initial Solution: 

For Demonstration, consider the matrix multiplication chain of 4 matrices 𝑀1𝑀2𝑀3𝑀4. 

Parenthesization of this chain can be done in five distinct ways: 𝑀1(𝑀2(𝑀3𝑀4)), 

𝑀1((𝑀2𝑀3)𝑀4), (𝑀1𝑀2)(𝑀3𝑀4), (𝑀1(𝑀2𝑀3))𝑀4 and ((𝑀1𝑀2)𝑀3)𝑀4. The way of 

parenthesization can have a dramatic impact on the computation cost. Let us assume 

the dimensions of the matrices 𝑀1, 𝑀2, 𝑀3 𝑎𝑛𝑑 𝑀4 be 10 x 100, 100 x 5, 5 x 50 and 50 

x 5 respectively. The computational cost of matrix multiplication (using a standard 

algorithm) for matrices of size let’s say p x q and q x r is dominated by the number of 

scalar multiplications which is  p x q x r. Thus, the computational cost of matrix 

multiplication is O(p x q x r). Therefore, the computation cost of evaluating the matrix 

multiplication chain using the five parenthesization would be: 

𝑀1(𝑀2(𝑀3𝑀4)) 5 x 50 x 5 + 100 x 5 x 5 + 10 x 100 x 5 = 8750 

𝑀1((𝑀2𝑀3)𝑀4) 100 x 5 x 50 + 100 x 50 x 5 + 10 x 100 x 5 = 55000 

(𝑀1𝑀2)(𝑀3𝑀4) 10 x 100 x 5 + 5 x 50 x 5 + 10 x 5 x 5 = 6500 

(𝑀1(𝑀2𝑀3))𝑀4 100 x 5 x 50 + 10 x100 x 50 + 10 x 50 x 5 = 77500 

((𝑀1𝑀2)𝑀3)𝑀4 10 x 100 x 5 + 10 x 5 x 50 + 10 x 50 x 5 = 10000 

 The computation cost of evaluating the matrix multiplication chain as per 

(𝑀1(𝑀2𝑀3))𝑀4 is around 12 times than evaluating as per (𝑀1𝑀2)(𝑀3𝑀4). 

Consider a matrix multiplication chain of j matrices, 𝑀1𝑀2𝑀3……𝑀𝑗. Let P(j) denote 

the number of parenthesizations possible. When j = 1, the sequence consists of only one 
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matrix, and there is only one way to parenthesize the matrix product fully. When j  ≥ 2, 

a fully parenthesized matrix product is the product of two fully parenthesized matrix 

subproducts, and the split between the two subproducts may occur between the k th and 

(k+1)st matrices for any k = 1, 2, 3, …..j – 1. Thus, we obtain a recurrence, 

𝑃(𝑗) = {

1                             , 𝑖𝑓 𝑗 = 1

 ∑𝑃(𝑘) 𝑃(𝑗 − 𝑘)

𝑗−1

𝑘=1

, 𝑖𝑓 𝑗 ≥ 2
 

This recurrence grows as Ω(2𝑗) (refer to Catalan numbers). Thus, exhaustively 

checking the computation cost for all possible parenthesizations is exponential in j. 

Therefore, the brute-force exhaustive search method makes for a poor strategy when 

determining how to parenthesize a matrix chain optimally.  

Exploration of Recurrence Structure: 

For simplicity, consider the recurrence structure for the matrix multiplication chain 

𝑀1𝑀2𝑀3𝑀4, as shown in the figure. 

 

As we can already see, multiple identical sub-problems exist. The problem can be 

solved more efficiently using dynamic programming incorporating memoization to 

store the results of prior computations. 

Solution Refinement: 

For a matrix multiplication chain of 𝑛 matrices: 𝑀1𝑀2𝑀3……𝑀𝑛. Where a matrix 𝑀𝑝 

is of dimensions 𝑚𝑝−1 × 𝑚𝑝 for 𝑝 = 1, 2, 3, ……𝑛. Let 𝐶[𝑖, 𝑗] denote the computation 

cost of evaluating the chain 𝑀𝑖𝑀𝑖+1𝑀𝑖+2……𝑀𝑗 most efficiently.  

We have the following three base case conditions, 

• When 𝑖 > 𝑗, we have 𝐶[𝑖, 𝑗] = 0 since the matrix production is not commutative  

• When 𝑖 =  𝑗, we have 𝐶[𝑖, 𝑗] = 0, since there is only one matrix in the chain 
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• When  𝑖 < 𝑗, we have 𝐶[𝑖, 𝑗] =  min
𝑖≤𝑘<𝑗

 (𝐶[𝑖, 𝑘] + 𝐶[𝑘 + 1, 𝑗] + 𝑛𝑖−1 × 𝑛𝑘 × 𝑛𝑗) 

Therefore, we have the following recurrence, 

𝐶[𝑖, 𝑗] =  {

0                                                                                       𝑖𝑓 𝑖 > 𝑗
0                                                                                       𝑖𝑓 𝑖 = 𝑗

min
𝑖≤𝑘<𝑗

 (𝐶[𝑖, 𝑘] + 𝐶[𝑘 + 1, 𝑗]  +  𝑛𝑖−1 × 𝑛𝑘 × 𝑛𝑗) 𝑖𝑓 𝑖 < 𝑗
 

The memoization can be done recursively (top-down approach). In this approach, 𝐶[𝑖, 𝑗] 

recursively calls 𝐶[𝑖, 𝑘] and 𝐶[𝑘 + 1, 𝑗], where 𝑘 is the index at which the chain is 

partitioned for parenthesization. The recursion continues until the base case 𝑖 = 𝑗 is 

reached, meaning there is only a single matrix. The solutions for subproblems are stored 

in a memoization table to avoid redundant computations. However, the drawback of the 

recursive approach is that storing function calls in the stack during recursion can lead 

to increased memory usage, especially for deep recursion trees. To avoid this, 

memoization can be done iteratively (bottom-up approach). 

To demonstrate how this recursion works, let us consider the example of a matrix 

multiplication chain of four matrices 𝑀1𝑀2𝑀3𝑀4. Our objective is to evaluate 𝐶[1,4]. 

Consider, 

 

The memoization table for this is as follows: 

 i 

j  1 2 3 4 

1 0    

2 C[1,2] 0   

3 C[1,3] C[3,2] 0  

4 C[4,4] C[2,4] C[3,4] 0 
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Notice that for computing C[1,3] we need values of only C[1,1], C[2,3], C[1,3] and 

C[3,3]. Similarly, for computing C[2,4], we need values of only C[2,2], C[3,4], C[2,3] 

and C[4,4], and so on and so forth. We can generalise from this observation that for 

computing any 𝐶[𝑖, 𝑗] we need values from the jth row and ith column. Hence, we can 

fill the table iteratively, starting from the diagonal and approaching the left-down 

corner.  

Data structuring and Complexity: 

Since there are O(n2) values to be filled (subproblems), and for each subproblem, O(n) 

possible values of k. Hence, the time complexity of the algorithm is O(n3) (which is 

much better than O(2n)) and total space complexity is O(n2). 

Longest Common Subsequence (LCS) Problem 

A subsequence is a sequence derived from another sequence by deleting some or no 

elements without changing the order of the remaining elements. More formally, given 

a sequence X = < x1, x2, x3,….xm > and another sequence Y = < y1, y2, y3,….yn > is a 

subsequence of X if there exists a strictly increasing sequence <i1, i2,i3,….ik > of indices 

of X such that for all j = 1,2,3,..k, we have 𝑥𝑖𝑗  = yj. 

Problem Statement: 

Given two sequences, X of length m and Y of length n, find the longest subsequence 

common to both X and Y. 

Goal: 

To determine the maximum length of a common subsequence between the two 

sequences using dynamic programming to minimize computational cost. 

Initial solution: 

We need to find LCS of X = < x1, x2, x3,….xm > and Y = < y1, y2, y3,….yn >. A naïve 

approach as an initial solution would be to search for every element of X iteratively in 

Y. This would yield us time complexity of O(n2). 

Solution Refinement: 

When a xm = yn, length of LCS would be length of LCS of Xm-1 and Yn-1 plus 1. When 

xm ≠ yn, the LCS would be the longest LCS out of LCS of 1) Xm-1 and Y 2) Yn-1 and X. 

This shows that LCS has many overlapping subproblems since finding LCS of Xm-1, Y 

and Yn-1, X share a common subproblem of finding LCS of Xm-1 and Yn-1. 

Let L[i, j] be the length of LCS of Xi and Yj where i = 0,1,2,3,….m and j = 0,1,2,3,….n. 

The base case is if either of i and j is 0, i.e. one of the sequences has length 0, then LCS 

would also be 0. Therefore, we have, 
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𝐿[𝑖, 𝑗] =  

{
 

 
0 𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0

1 +  𝐿[𝑖 − 1, 𝑗 − 1] 𝑖𝑓 𝑖, 𝑗 > 0 𝑎𝑛𝑑 𝑥𝑖 = 𝑦𝑗

𝑚𝑎𝑥 {
𝐿[𝑖 − 1, 𝑗]
𝐿[𝑖, 𝑗 − 1]

 𝑤ℎ𝑒𝑛 𝑥𝑖 ≠ 𝑦𝑗

  

The problem can be either solved recursively where each L[i, j] iteratively calls L[i, j-

1] and L[i-1, j] until a base case is reached, then the solutions to subproblems are 

recombined from bottom to top and the results are stored in the memoization table. 

However, storing function calls in the stack itself consumes some storage. Iteratively 

computing the solutions from the base case is another approach that is equally efficient 

and more intuitive. 

Consider the example where X = <Y, E, L, L, O, W> and Y = <H, E, L, L, O>. As we 

can see that LCS is <E, L, L, O>. Consider the memoization table for L[i, j] . We aim 

to evaluate L[6,5] and find out the LCS. We can do this iteratively by starting with 

L[0,0] = L[0,:] = L[:,0] = 0. Since x1 ≠ y1, L[1,1] would be maximum of L[0,1] and 

L[1,0] which is 0. Similarly, we have L[:, 1]  = L[1,:] = 0 since ‘H’ from sequence Y is 

not in sequence X and ‘Y’ from sequence X is not in sequence Y. L[2,1] = 0 since <Y, 

E> doesn’t share have any common sequence with <H>. Similarly, we can fill the rest 

of the table either row-wise or column-wise. 

X 

Y 

i  j 

  0  1 2 3 4 5 

   H E L L O 

0   0 0 0 0 0 0 

1 Y 0 0 0 0 0 0 

2 E 0 0 1 1 1 1 

3 L 0 0 1 2 2 2 

4 L 0 0 1 2 3 3 

5 O 0 0 1 2 3 4 

6 W 0 0 1 2 3 4 

As we can see from the table, L[6,5] = 4; hence, the length of LCS of X = <Y, E, L, L, 

O, W> and Y = <H, E, L, L, O> is 4. To find LCS, we need to find the indices i and j 

where the increment occurred. This can be done by moving backwards from L[6,5] 

towards L[0,0] by following the direction where the increment occurred (as shown by 

the red arrow). Hence, we can see that the LCS is <E, L, L, O>. 

 


