
FADML Scribe
Balaji M

20th January 2025

1 Divide and Conquer Paradigm - RECAP

Decomposition

Recomposition

Base Condition

In general, a divide-and-conquer algorithm has the following format.

(1) If the size of instance I is ’small’, then solve the problem using a straightforward method and re-
turn the answer, also known as base conditions. Otherwise, continue to the next step.
(2) Divide the instance I into p sub-instances I1, I2,...,Ip of approximately the same size. (Decomposition)
(3) Recursively call the algorithm on each sub-instance Ij, 1 ≤ j ≤ p., to obtain p partial solutions.
(4) Combine the results of the p partial solutions to obtain the solution to the original instance I. Return
the solution of instance I. (Recomposition)

A good algorithm balances between the optimal split point, decomposition,and recomposition.

2 Median Finding Algorithm

Given an array A = A[1,...,n] of n numbers and an index i (1 ≤ i ≤ n.), find the median of A. If n is odd,
then setting i = n+1

2 gives the median of A. If n is even, then the median will be average of the cases
i = ⌈n+1

2 ⌉ and i = ⌊n+1
2 ⌋. Median shall be found by sorting the array and obtaining the median using

the above formula. However, even the best sorting algorithm takes Θ(nlogn). time. However, with the
help of a deterministic algorithm, this shall be found in O(n) time.

The steps of ’Median of Medians’ algorithm given below:

(1) Divide the n items into groups of 5.If 5 does not divide p, then discard the remaining elements.
(2) Find the median of each group of 5. Sort the five elements and 3rdelement is the median of group.
Let the set of medians be M.
(3) Use median recursively to find the median (call it x) of these ⌈n/5⌉ medians.

mm← median(M, ⌊n/2⌋)

(4) Partitions the elements in A into three arrays: A1, A2, and A3, which, respectively, contain those
elements less than, equal to, and greater than mm. (5) This step decides where the median is present
among the three arrays, depending on the outcome of this test.The algorithm either returns the median,

1

Figure 1: Nature of elements w.r.t Median of Medians .

Figure 2: Splitting of array into three parts based on mm

or recurses on either A1 or A3.
The amount of data trimmed everytime is atleast

3 · ⌈⌊n/5⌋/2⌉ = 3

2
· ⌊n/5⌋ ≤ 3

2
· n− 4

5

Thus the new length of data called for next iteration is

n− 3

2
· n− 4

5
= 0.7n+ 1.2 ≤ 3

4
n

The time complexity is given by

T (n) = O(n) + T (⌊n/5⌋) + T (0.7n+ 1.2)

It shall be inferred that the no. of elements in A1 and A3 would not exceed roughly 0.7*n, which is a
constant factor.

T (n) ≤ O(n) + T (⌊n/5⌋) + T

(
3

4
n

)
This implies that T(n) is of the order O(n). Thus, it is fair to say that

T (n) ≤ k · n

The above equation is of the form The recurrence relation is given by:

T (n) = T (c1n) + T (c2n) + bn

2

The solution to this recurrence equation is:

k ≥ b

1− c1 − c2

When c1=0.75 and c2=0.2,
k ≥ 20b

Pseudocode

Algorithm 1: Median of Medians

Input: An array A[1..n] of n elements.
Output: The median element in A.

1. median(A, n/2)
Procedure median(A, n/2)

1. n← |A|

2. if n < 44 then sort A and return (A[⌊n/2⌋])

3. Let q = ⌊n/5⌋. Divide A into q groups of 5 elements each. (If 5 does not divide q, then discard the
remaining elements.)

4. Sort each of the q groups individually and extract its median. Let the set of medians be M .

5. mm← median(M, ⌊q/2⌋) {mm is the median of medians}

6. Partition A into three arrays:

A1 = { a | a < mm}, A2 = { a | a = mm}, A3 = { a | a > mm}.

7. case

|A1| ≥ n/2: return median(A1, n/2)

|A1|+ |A2| ≥ n/2: return mm

|A1|+ |A2| < n/2: return median(A3, n/2− |A1| − |A2|)

8. end case

Why groups of 5?
When the groups are of even size, it becomes necessary to add more row to compute the median as
compared to their odd counterparts.
When n=3, the trimmed portion is

n− n− 2

3
=

2n

3
+

2

3

This is not considered ideal due to the reason that n
3 elements are involved in sorting for median and 2n

3
is involved in decomposition. Thus, there is no trimming of data here. For odd integers greater than 5,
even they are asymptotically same as that of that 5, the constant value keeps increasing.
The sorting cost is given by

O
(n
k
· k log k

)
When n=1000, k=5,7,9,11...., sorting cost is given by,

3

k 1000 · log2(k)
5 2321.92
7 2807.35
9 3169.92
11 3459.43
13 3700.43

15 3906.89

Table 1: Approximate values of 1000 · log2(k).

Thus, 5 is considered as the ideal split among others.

3 Closest Pair Algorithm

Let S be a set of n points in the plane. The goal is to find a pair of points p and q in S whose mutual
distance is minimum. In other words, we want to find two points p1 = (x1, y2) and p2 = (x2, y2) in
S with the property that the distance between them defined by d(p1, p2) =

√
(x1 − x2)2 + (y1 − y2)2 is

minimum among all pairs of points in S. Here d(p1, p2) is referred to as the Euclidean distance between
p1 and p2.

The steps of the algorithm are as follows:
(1) Sort the points in S by increasing x-coordinate, which is done only once throughout the algorithm.
(2) The point set S is divided about a vertical line L into two subsets Sl and Sr such that |Sl| = ⌊|S|/2⌋
and |Sr| = ⌈|S|/2⌉. The points to the left are part of Sl and points to the right are part of Sr.
(3) Recursively, the minimum separations δl and δr of the two subsets Sl and Sr, respectively, are com-
puted. (4) For the combine step, the smallest separation δ’ between a point in Sl and a point in Sr is
also computed. Finally, the desired solution is the minimum of δl, δr, and δ’.

Computation of δ’
The näıve method which computes the distance between each point in Sl and each point in Sr requires
Ω(n2) in the worst case. However, it shall be performed in better time complexity. The new algorithm
proposes that rather comparing all the n points for each point. It’s enough to compare only the 7 neigh-
bouring points. The proof of the same is discussed below:

Figure 3: Points at distance of δ from vertical line L .

4

(1) Let δ = min{δl, δr}. If exists, the closest pair pl in Sl and some point pr in Sr, they must be within
distance δ of the dividing line L. Let S′

l and S′
r denote, respectively, the points in Sl and Sr within

distance δ of L, then pl must be in S′
l and pr must be in S′

r.
(2) Let there be δ′ such that δ′ ≤ δ, then there is a pair of points where d(pl, pr) = δ. This indicates that
the maximum possible vertical distance between the pair is δ.
(3) This indicates that the pair of point is bound to be within a rectangle of area δ x 2δ′

Figure 4: Pair of points with in the rectangle

(4) Let T be the set of points within the two vertical strips. By geometry, the maximum number of points
with distance of δ from each other could be 8. (4 in Sl and 4 in Sr)
(5) The maximum number is attained when one point from Sl coincides with one point from Sr at the
intersection of L with the top and bottom of the rectangle.
(6) Thus, each point in T needs to be compared with at most seven points in T . Neighbours are found
by sorting the points in T by increasing y-coordinate.

Time Complexity of Algorithm

T (n) =

{
c, if n ≤ 3,

T
(
n
2

)
+ T

(
n
2

)
+Θ(n), if n > 3.

The Θ(n) is attained by the Mergesort algorithm, where sorting is every recursion is replaced by merging.

Pseudocode

The Pesudocode for this algorithm is attached in the next page.

5

Algorithm 2: CLOSESTPAIR

1 Input: A set S of n points in the plane.
2 Output: The minimum separation realized by two points in S.

1. Sort the points in S in nondecreasing order of their x-coordinates.

2. (δ, Y)← cp(1, n)

3. return δ

Procedure cp(low,high)

1. if (high− low + 1) ≤ 3 then

2. compute δ by a straightforward method.

3. Let Y contain the points in nondecreasing order of y-coordinates.

4. else

5. mid← low+high
2

6. x0 ← x
(
S[mid]

)
7. (δl, Yl)← cp(low,mid)

8. (δr, Yr)← cp(mid + 1,high)

9. δ ← min{δl, δr}

10. Y ← Merge(Yl, Yr) in nondecreasing order of y-coordinates.

11. k ← 0

12. for i← 1 to |Y | {Extract T from Y }

13. if
∣∣x(Y [i])− x0

∣∣ ≤ δ then

14. k ← k + 1

15. T [k]← Y [i]

16. end if

17. end for {k is the size of T}

18. δ′ ← 2 δ {Initialize δ′ to any number greater than δ}

19. for i← 1 to (k − 1) {Compute δ′}

20. for j ← (i+ 1) to min{i+ 7, k}

21. if d(T [i], T [j]) < δ′ then δ′ ← d(T [i], T [j])

22. end for

23. end for

24. δ ← min{δ, δ′}

25. end if

26. return (δ, Y)

6

4 Convex Hull Algorithm

Given a set S of n points in the plane, find CH(S), the convex hull of S.

Figure 5: A set of point S for which convex hull is calculated

Figure 6: Final convex hull

The Graham Scan algorithm for Convex Hull is given by:

(1) The point with the minimum y-coordinate is found, call it p0.
(2) If there are two or more points with the minimum y-coordinate, p0 is chosen as the rightmost one.
(3) The coordinates of all points are transformed such that p0 is at the origin. The points in S \ {p0} are
then sorted by polar angle about the origin p0.
(4) If two points pi and pj form the same angle with p0, then the one that is closer to p0 precedes the
other in the ordering. Let the sorted list be T = {p1, p2, . . . , pn−1}, where p1 and pn−1 form the least
and greatest angles with p0, respectively.
(5) Let there be a scan with respect to event point based on the order of points in the sorted list T ,
and the sweep line status being implemented using a stack St. At any moment, let the stack content be
St = (pn−1, p0, . . . , pi, pj) (i.e., pi and pj are the most recently pushed points), and let pk be the next
point to be considered.

7

(6) If the triplet pi, pj , pk forms a left turn, then pk is pushed on top of the stack and the sweep line is
moved to the next point. If pi, pj , pk form a right turn or are collinear, then pj is popped off the stack
and the sweep line is kept at point pk.

Time Complexity
The sorting step costs O(n log n) time. In the while loop, each point is pushed exactly once and is
popped at most once. Moreover, checking whether three points form a left turn or a right turn amounts
to computing their signed area in Θ(1) time. Thus, the cost of the while loop is Θ(n). Due to this, the
algorithm has a time complexity of O(n log n).

Pseudocode

Algorithm 3: CONVEXHULL - GRAHAM SCAN

1 Input: A set S of n points in the plane.
2 Output: CH(S), the convex hull of S stored in a stack St.

1. Let p0 be the rightmost point with minimum y-coordinate.

2. T [0]← p0

3. Let T [1..n− 1] be the points in S \ {p0} sorted in increasing polar angle about p0. If two points pi
and pj form the same angle with p0, then the one that is closer to p0 precedes the other in the
ordering.

4. push(St, T [n− 1]); push(St, T [0])

5. k ← 1

6. while k < n− 1

7. Let St = (T [n− 1], . . . , T [i], T [j]), where T [j] is on top of the stack.

8. if T [i], T [j], T [k] is a left turn then

9. push(St, T [k])

10. k ← k + 1

11. else pop(St)

12. end if

13. end while

5 Reductions

Reductions shall be used to establish lower bounds for algorithms of a given problem by comparing the
complexity of classes of computational problems. Such comparisons will be made by describing transfor-
mations from one problem to another. A transformation is simply a function that maps instances of one
problem to instances of another problem.

Let A be a problem whose lower bound is known to be Ω(f(n)), where n = o(f(n)), e.g., f(n) = n log n.
Let B be a problem for which we wish to establish a lower bound of Ω(f(n)). We establish this lower
bound for problem B as follows:

8

1. Convert the input to A into a suitable input to problem B.

2. Solve problem B.

3. Convert the output into a correct solution to problem A.

In order to achieve a linear time reduction, Steps 1 and 3 above must be performed in time O(n). In this
case, we say that the problem A has been reduced to the problem B in linear time, and we denote this
by writing A ∝n B.

9

