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Coin Exchange Problem 
Let us consider we have a set C of n coins: 

 𝐶 = {𝐶
1
, 𝐶

2
, 𝐶

3
,..., 𝐶

𝑛
}

Now, we are faced with the following problem: 
Given a value V we need to return the minimum number of coins i of set U from the given set C i.e. 

 , where i is the minimum possible number. 
𝑖∈𝑈
∑ 𝐶

𝑖
= 𝑉

Solution 1: 
We write the following pseudocode for the problem: 
 
Coins(U={list of used coins},P={list of not used coins},u={sum of U}, p=V-u,n={no.of coins used}) 
{ 
​ INITIAL VARIABLES 
​  𝑈

𝑚𝑖𝑛
= 𝑁𝑈𝐿𝐿

​  𝑚 = ∞
 

BASE 
 𝑖𝑓 (𝑝 == 0) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑈, 𝑛)

 𝑖𝑓 (𝑝 < 0) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑁𝑢𝑙𝑙, ∞)
 𝑖𝑓 (𝑃 == 𝑁𝑢𝑙𝑙) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑁𝑢𝑙𝑙, ∞)

 
RECURSIVE SOL. 

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛:
 {

​ ​ ​ ​ ​ ​ ​ ​ ​ ​         (1) 𝑈, = 𝑈 + {𝐶
𝑖
}

​ ​ ​ ​ ​ ​ ​ ​ ​ ​         (2) 𝑃, = 𝑃 − {𝐶
𝑖
}

​ ​ ​ ​                      (3) < 𝑠,, 𝑚, >= 𝐶𝑜𝑖𝑛𝑠(𝑈,, 𝑃,, 𝑢 + 𝐶
𝑖
, 𝑝 − 𝐶

𝑖
, 𝑛 + 1) 

​ ​ ​ ​ ​ ​ ​ ​ ​ ​         (4) 𝑖𝑓 (𝑚, < 𝑚){

​​ ​ ​ ​ ​ ​ ​ ​ ​ ​         (5)  𝑚 = 𝑚,

​ ​ ​ ​ ​ ​ ​ ​ ​ ​         (6)   𝑈
𝑚𝑖𝑛

= 𝑈,}

 }
 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑈

𝑚𝑖𝑛
, 𝑚)
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Time Complexity Calculation 
 𝑇(𝑛) = 𝑛𝑇(𝑛 − 1) + 𝑂(𝑛)

 For steps 1,2,3 𝑛𝑇(𝑛 − 1):
 For steps 4,5,6 𝑂(𝑛):

 
Now, solving the above equation we will get: 

 𝑇(𝑛) = 𝑂(𝑛!)
 
Recursive Structure of Solution 

 
 
Solution 2 (Alternative Sol.): 
We write the following pseudocode for the problem: 
 
Coins(U={list of used coins},P={list of not used coins},u={sum of U}, p=V-u,n={no.of coins used}) 
{ 
​ INITIAL VARIABLES 
​  𝑈

𝑚𝑖𝑛
= 𝑁𝑈𝐿𝐿

​  𝑚 = ∞
 

BASE 
 𝑖𝑓 (𝑝 == 0) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑈, 𝑛)

 𝑖𝑓 (𝑝 < 0) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑁𝑢𝑙𝑙, ∞)
 𝑖𝑓 (𝑃 == 𝑁𝑢𝑙𝑙) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑁𝑢𝑙𝑙, ∞)

 
RECURSIVE SOL. 

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛:
​ ​ ​ ​ ​ ​ ​ ​ ​         {

​ ​ ​                      (1) < 𝑠
0
, 𝑚

0
>= 𝐶𝑜𝑖𝑛𝑠(𝑈,, 𝑃, − {𝐶

𝑖
}, 𝑢 + 𝐶

𝑖
, 𝑝 − 𝐶

𝑖
, 𝑛 + 1) 

              ​ ​ ​ ​                      (2) < 𝑠
1
, 𝑚

1
>= 𝐶𝑜𝑖𝑛𝑠(𝑈,, 𝑃, − {𝐶

𝑖
}, 𝑢, 𝑝, 𝑛) 

​ ​ ​ ​ ​ ​ ​ ​ ​ ​         (3) 𝑖𝑓 (𝑚
1

< 𝑚
0
){

​ ​ ​ ​ ​ ​ ​ ​ ​ ​         (4)  𝑚 = 𝑚
1

​ ​ ​ ​ ​ ​ ​ ​ ​         (5) 𝑈
𝑚𝑖𝑛

= 𝑈 + {𝐶
𝑖
}  }
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 𝑒𝑙𝑠𝑒{
​ ​ ​ ​ ​ ​ ​ ​ ​ ​         (6) 𝑈

𝑚𝑖𝑛
= 𝑈

​ ​ ​ ​ ​ ​ ​ ​ ​ ​         (7) 𝑚 = 𝑚
0
   }

   }
 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑈

𝑚𝑖𝑛
, 𝑚)

 
 

Time Complexity Calculation 
 𝑇(𝑛) = 2𝑇(𝑛 − 1) + 𝑂(1)

 For steps 1,2 2𝑇(𝑛 − 1):
 For steps 3,4,5,6,7 𝑂(1):

 
Now, solving the above equation we will get: 

 𝑇(𝑛) = 𝑂(2𝑛)
 
Recursive Structure of Solution 

 
 
Observation and Solution Refinement 
If in a particular branch the value of n is greater than the best solution we have obtained till that time then 
we can completely ignore that branch and save computation. This is known as Pruning the Recursive 
Tree and is part of the Branch and Bound Algorithm. 
 
Updated Solution 1: 
 
Coins(U={list of used coins},P={list of not used coins},u={sum of U}, p=V-u,n={no.of coins used}) 
{ 
​ INITIAL VARIABLES 
​  𝑈

𝑚𝑖𝑛
= 𝑁𝑈𝐿𝐿

​  𝐶𝐵 = 𝑚 = ∞
 

BASE 
 𝑖𝑓 (𝑝 == 0) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑈, 𝑛)

 𝑖𝑓 (𝑝 < 0) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑁𝑢𝑙𝑙, ∞)
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 𝑖𝑓 (𝑃 == 𝑁𝑢𝑙𝑙) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑁𝑢𝑙𝑙, ∞)
 𝑖𝑓 (𝐶𝐵 <= 𝑛) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑁𝑢𝑙𝑙, ∞) 

 
RECURSIVE SOL. 

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛:
 {

​ ​ ​ ​ ​ ​ ​ ​ ​ ​          𝑈, = 𝑈 + {𝐶
𝑖
}

​ ​ ​ ​ ​ ​ ​ ​ ​ ​          𝑃, = 𝑃 − {𝐶
𝑖
}

​ ​ ​ ​                       < 𝑠,, 𝑚, >= 𝐶𝑜𝑖𝑛𝑠(𝑈,, 𝑃,, 𝑢 + 𝐶
𝑖
, 𝑝 − 𝐶

𝑖
, 𝑛 + 1) 

​ ​ ​ ​ ​ ​ ​ ​ ​ ​          𝑖𝑓 (𝑚, < 𝑚){

​​ ​ ​ ​ ​ ​ ​ ​ ​ ​           𝑚 = 𝑚,

 𝑈
𝑚𝑖𝑛

= 𝑈,}

 
​ ​ ​ ​ ​ ​ ​ ​ ​            𝑖𝑓(𝑚 < 𝐶𝐵) {𝐶𝐵 = 𝑚}

 }
 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑈

𝑚𝑖𝑛
, 𝑚)

 
Updated Solution 2: 
Coins(U={list of used coins},P={list of not used coins},u={sum of U}, p=V-u,n={no.of coins used}) 
{ 
​ INITIAL VARIABLES 
​  𝑈

𝑚𝑖𝑛
= 𝑁𝑈𝐿𝐿

​  𝐶𝐵 = 𝑚 = ∞
 

BASE 
 𝑖𝑓 (𝑝 == 0) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑈, 𝑛)

 𝑖𝑓 (𝑝 < 0) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑁𝑢𝑙𝑙, ∞)
 𝑖𝑓 (𝑃 == 𝑁𝑢𝑙𝑙) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑁𝑢𝑙𝑙, ∞)

 𝑖𝑓 (𝐶𝐵 <= 𝑛) 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑁𝑢𝑙𝑙, ∞) 
RECURSIVE SOL. 

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛:
​ ​ ​ ​ ​ ​ ​ ​ ​         {

​ ​ ​                       < 𝑠
0
, 𝑚

0
>= 𝐶𝑜𝑖𝑛𝑠(𝑈,, 𝑃, − {𝐶

𝑖
}, 𝑢 + 𝐶

𝑖
, 𝑝 − 𝐶

𝑖
, 𝑛 + 1) 

              ​ ​ ​ ​                      < 𝑠
1
, 𝑚

1
>= 𝐶𝑜𝑖𝑛𝑠(𝑈,, 𝑃, − {𝐶

𝑖
}, 𝑢, 𝑝, 𝑛) 

​ ​ ​ ​ ​ ​ ​ ​ ​ ​         𝑖𝑓 (𝑚
1

< 𝑚
0
){

​ ​ ​ ​ ​ ​ ​ ​ ​ ​           𝑚 = 𝑚
1

​ ​ ​ ​ ​ ​ ​ ​ ​          𝑈
𝑚𝑖𝑛

= 𝑈 + {𝐶
𝑖
}  }

 𝑒𝑙𝑠𝑒{
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​ ​ ​ ​ ​ ​ ​ ​ ​ ​          𝑈
𝑚𝑖𝑛

= 𝑈

 𝑚 = 𝑚
0
   }

​ ​ ​ ​ ​ ​ ​ ​ ​  𝑖𝑓(𝑚 < 𝐶𝐵) {𝐶𝐵 = 𝑚}
   }

 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑈
𝑚𝑖𝑛

, 𝑚)

Memoization for Solution Refinement 
We can also use a memoization table as shown below to further refine our solution: 
 

 0 1 2 3 4 5 6 7 8 9 10 11 

Φ Φ,0 Null,∞ Null,∞ Null,∞  Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ 

1 Φ,0 {1},1 Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ 

2 Φ,0 {1},1 {2},1 {1,2},2 Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ Null,∞ 

5 Φ,0 {1},1 {2},1 {1,2},2 Null,∞ {5},1 {1,5},2 {2,5},2 {1,2,5}
,3 

Null,∞ Null,∞ Null,∞ 

6 Φ,0 {1},1 {2},1 {1,2},2 Null,∞ {5},1 {6},1 {1,6},2 {6,2},2 {1,2,6}
,3 

Null,∞ {5,6},2 

8 Φ,0 {1},1 {2},1 {1,2},2 Null,∞ {5},1 {6},1 {1,6},2 {8},1 {1,8},2 {2,8},2 {5,6},2 

 
Time and Space Complexity 
 
Space Complexity:   𝑂(𝑘𝑉)
where  is the number of rows in memory and  is the number of values (in this case from 0 to 11 i.e. 12) 𝑘 𝑉
 
Time Complexity:  𝑂(𝑛𝑙𝑜𝑔

2
𝑛) + 𝑂(𝑘𝑉)

 required to sort the given set C 𝑂(𝑛𝑙𝑜𝑔
2
𝑛):

 
Now, the term  will dominate therefore, 𝑂(𝑘𝑉)
Worst-Case Space Complexity:   𝑂(𝑛𝑉)
Worst-Case Time Complexity:  𝑂(𝑛𝑙𝑜𝑔

2
𝑛) + 𝑂(𝑛𝑉) = 𝑂(𝑛𝑉)

 
Best-Case Space Complexity:   𝑂(𝑉)
Best-Case Time Complexity:  𝑂(𝑛𝑙𝑜𝑔

2
𝑛) + 𝑂(𝑉) = 𝑂(𝑉)

 
Food for Thought 

1.​ If the coins in set C had duplicates 
2.​ If the set C had ∞ length 
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Algorithm Design Paradigm 

1.​ Divide and Conquer 
2.​ Dynamic Programming 
3.​ Greedy Algorithms 
4.​ Branch and Bound  
5.​ Combinatorial Exploration 

 
Divide and Conquer Paradigm 

1.​ Base Case(s): B(z) 
2.​ Decomposition: < > ←D(x) 𝑥

1
, 𝑥

2
,.... 𝑥

𝑛

3.​ Subroutine Calls: ← ,...., ←  𝑌
1

𝑓(𝑥
1
) 𝑌

𝑘
𝑓(𝑥

𝑘
)

4.​ Recomposition: ←R( ) 𝑌 𝑌
1
, 𝑌

2
,..., 𝑌

𝑘

   

Time Complexity: ​           Time complexity of subroutine calls 𝑇(𝑛) =
𝑖=1

𝑘

∑ 𝑇(𝑛
𝑖
) + 𝐷(𝑛) + 𝑅(𝑛) 𝑇(𝑛

𝑖
):

​ ​ ​ ​ ​ ​ ​          Time complexity of Decomposition 𝐷(𝑛):
​ ​ ​ ​ ​ ​ ​          :Time complexity of Recomposition 𝑅(𝑛)
​ ​ ​        
Recursive Structure of Divide and Conquer 

 
 
General Time Complexity Derivation: 

 𝑇(𝑛) =
𝑖=1

𝑘

∑ 𝑇(𝑛
𝑖
) + 𝐷(𝑛) + 𝑅(𝑛)

 , where  𝑇(𝑛) = 𝑎𝑇( 𝑛
𝑏 ) + 𝑓(𝑛) 𝐷(𝑛) + 𝑅(𝑛) = 𝑓(𝑛)

 𝑇(𝑛) = 𝑎2𝑇( 𝑛

𝑏2 ) + 𝑎𝑓( 𝑛
𝑏 ) + 𝑓(𝑛)

. 

. 

 𝑇(𝑛) = 𝑎𝑘𝑇( 𝑛

𝑏𝑘 ) +
𝑖=0

𝑘−1

∑ 𝑎𝑖𝑓( 𝑛

𝑏𝑖 )
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Now,  is base case. 𝑇( 𝑛

𝑏𝑘 )

Therefore,  𝑏𝑘 = 𝑛
 𝑜𝑟,  𝑘 = 𝑙𝑜𝑔

𝑏
𝑛

Hence, the time complexity equation becomes: 

 𝑇(𝑛) = 𝑎
𝑙𝑜𝑔

𝑏
𝑛
𝑇(1) +

𝑖=0

𝑙𝑜𝑔
𝑏
𝑛−1

∑ 𝑎𝑖𝑓( 𝑛

𝑏𝑖 )

Now, (constant) 𝑇(1) = 𝐶
Therefore, 

 𝑇(𝑛) = 𝐶. 𝑛
𝑙𝑜𝑔

𝑏
𝑎

+
𝑖=0

𝑙𝑜𝑔
𝑏
𝑛−1

∑ 𝑎𝑖𝑓( 𝑛

𝑏𝑖 )

Note: 

 Time complexity component due to solving the sub-problems 𝐶𝑛
𝑙𝑜𝑔

𝑏
𝑎
:

 Time complexity component due to decomposition and recombinations 
𝑖=0

𝑙𝑜𝑔
𝑏
𝑛−1

∑ 𝑎𝑖𝑓( 𝑛

𝑏𝑖 ):

 
Now, we will introduce Master’s Theorem where we will compare these 2 components to decide the 
final time complexity of Divide and Conquer algorithm. 
 
Master’s Theorem 

Case 1:  𝑓(𝑛) = 𝑂(𝑛
𝑙𝑜𝑔

𝑏
𝑎−ϵ

),  ϵ > 0

Here,  dominates  and the final time complexity results in: 𝐶𝑛
𝑙𝑜𝑔

𝑏
𝑎

𝑖=0

𝑙𝑜𝑔
𝑏
𝑛−1

∑ 𝑎𝑖𝑓( 𝑛

𝑏𝑖 )

 𝑇(𝑛) = θ(𝑛
𝑙𝑜𝑔

𝑏
𝑎
)

Case 2:  𝑓(𝑛) = θ(𝑛
𝑙𝑜𝑔

𝑏
𝑎
)

Here,  and   have the same order of time complexity, therefore: 𝐶𝑛
𝑙𝑜𝑔

𝑏
𝑎

𝑖=0

𝑙𝑜𝑔
𝑏
𝑛−1

∑ 𝑎𝑖𝑓( 𝑛

𝑏𝑖 )

 𝑇(𝑛) = 𝑂(𝑛
𝑙𝑜𝑔

𝑏
𝑎
𝑙𝑜𝑔

𝑏
𝑛)

Case 3:  𝑓(𝑛) = Ω(𝑛
𝑙𝑜𝑔

𝑏
𝑎+ϵ

),  ϵ > 0

Here,  is dominated by  and the final time complexity results in: 𝐶𝑛
𝑙𝑜𝑔

𝑏
𝑎

𝑖=0

𝑙𝑜𝑔
𝑏
𝑛−1

∑ 𝑎𝑖𝑓( 𝑛

𝑏𝑖 )

 𝑇(𝑛) = θ(𝑓(𝑛))
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Searching Problems 
Given a set L{ } we want to find whether x is present in it. 𝑥

1
, 𝑥

2
,..., 𝑥

𝑛

1.​ Searching in Unordered Sets 
Here L{ }is unordered. 𝑥

1
, 𝑥

2
,..., 𝑥

𝑛

We write the following pseudocode for the problem: 
 
Search_U(L,x){ 
 
BASE: 

 return False 𝑖𝑓 (|𝐿| == 0)
 𝑖𝑓 (|𝐿| == 1)

{​ return True 𝑖𝑓(𝐱 == 𝑥
1
) 

​ ​          return False 𝑒𝑙𝑠𝑒
} 
 
DECOMPOSITION: 
Split L into  (non-empty) 𝐿

1
, 𝐿

2

 
RECOMPOSITION: 

 Search_U( ,x) return True 𝑖𝑓 𝐿
1

 Search_U( ,x) return True 𝑒𝑙𝑖𝑓 𝐿
2

 return False 𝑒𝑙𝑠𝑒
 
Time Complexity: 

​ ​ ​ ​ ​  𝑇(𝑛) = 𝑇(𝑘) + 𝑇(𝑛 − 𝑘) + 𝑂(1) 𝐷(𝑛) + 𝑅(𝑛) = 𝑂(1)
 
On Solving: 
For any ,  𝑘 𝑇(𝑛) = 𝑂(𝑛)
 

2.​ Searching in Ordered Sets 
Here L{ }is unordered. 𝑥

1
, 𝑥

2
,..., 𝑥

𝑛

We write the following pseudocode for the problem: 
 
Search_O(L,x){ 
 
BASE: 

 return False 𝑖𝑓 (|𝐿| == 0)
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​ ​ ​ ​ ​ ​ ​ ​ DECOMPOSITION 𝑖𝑓(𝑥
𝑖

> 𝐱)

{ 
​  Search_O(L- ,x): return True​ ​ ​ RECOMPOSITION 𝑖𝑓 {𝑥

𝑖
,...., 𝑥

𝑛
}

​  return False​ ​ ​ ​ ​ ​ RECOMPOSITION 𝑒𝑙𝑠𝑒
} 

​ ​ ​ ​ ​ ​ ​ ​ ​ DECOMPOSITION 𝑒𝑙𝑠𝑒
{ 
​  Search_O(L- ,x): return True​ ​ ​ RECOMPOSITION 𝑖𝑓 {𝑥

1
,...., 𝑥

𝑖
}

​  return False​ ​ ​ ​ ​ ​ RECOMPOSITION 𝑒𝑙𝑠𝑒
} 
 
Time Complexity: 

​ ​ ​  𝑇(𝑛) = 𝑚𝑎𝑥{𝑇(𝑖 − 1), 𝑇(𝑛 − 𝑖 − 1)} + 𝑂(1) 𝐷(𝑛) + 𝑅(𝑛) = 𝑂(1)
 

 or : 𝐼𝑓 𝑖 == 1 𝑎𝑛𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑘
 𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑂(1) = 𝑂(𝑛)

 
: 𝑖𝑓 𝑖 == 𝑛/2

 𝑇(𝑛) = 𝑇( 𝑛
2 ) + 𝑂(1) = 𝑂(𝑙𝑜𝑔

2
𝑛)

 
:   𝑖𝑓 𝑖 == 𝑎 𝑤ℎ𝑒𝑟𝑒,  𝑎 ∈ (0, 1) 𝑎𝑛𝑑 𝑎 ≠ 0. 5

 𝑇(𝑛) = 𝑂(𝑙𝑜𝑔
1/𝑎

𝑛),  𝑖𝑓 𝑎 > 0. 5

 𝑇(𝑛) = 𝑂(𝑙𝑜𝑔
1/(1−𝑎)

𝑛),  𝑖𝑓 𝑎 < 0. 5

 
Therefore, T(n) minimises at i=2. Hence, it is called BINARY SEARCH. 
(the argument still holds even if we tried multi-probing with different values.) 
 

FOOD FOR THOUGHT: 
 

L=ordered 
S=ordered 

L=ordered 
S=unordered 

L=unordered 
S=ordered 

L=unordered 
S=unordered 

 
Where, L is the set to be searched in and S is the set of elements for which search is made. 
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Sorting Problems 
Given an unordered set L{ } we want to sort it. 𝑥

1
, 𝑥

2
,..., 𝑥

𝑛

1.​ Selection Sort 
The logic of the algorithm is given as follows: 

a.​ Find the max in L(let it be ) 𝑥
𝑚𝑎𝑥,1

b.​ Find the max in L- (let it be ) 𝘅
𝑚𝑎𝑥,1

𝑥
𝑚𝑎𝑥,2

c.​ Repeat steps a and b until L={} 
​  
​ We write the following pseudocode: 
​ sort_1(L){ 
​  
​ BASE: 
​ return L 𝑖𝑓(|𝐿| <= 1)
​  
​ DECOMPOSITION 
​  𝑥

𝑖
= 𝑓𝑖𝑛𝑑𝑀𝐴𝑋(𝐿)

​  𝐿, = 𝐿 − {𝑥
𝑖
}

​  
​ RECURSIVE CALL 

​ sort_1( ) 𝑀 = 𝐿,

 
​ RECOMPOSITION 
​ return ( ) 𝑥

𝑖
||𝑀

​ } 
​ Time Complexity: 
​    ​ ​ ​ ​ ​ ​ ​ ​         (*) 𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑂(𝑛)

​  𝑇(𝑛) = 𝑂(𝑛2)
 

2.​ Heap Sort 
In the selection sort we were repeatedly finding the max from the remaining elements resulting in 

the  term in (*) equation which ultimately results in . In Heap Sort we try to 𝑂(𝑛) 𝑇(𝑛) = 𝑂(𝑛2)
improve this max finding by utilising the information already available from the previous max 
finding exercise, thereby resulting in the  in eq (*) to be  and finally giving us 𝑂(𝑛) 𝑂(𝑙𝑜𝑔

2
𝑛)

. To achieve our objective we will first use the Max Heap DataStructure 𝑇(𝑛) = 𝑂(𝑛𝑙𝑜𝑔
2
𝑛)

followed by adjusting the branches of the Tree everytime the root node is popped out. We will 
illustrate this with an example: 
 

Let L={ } 5, 1, 2, 11, 3, 9, 10
Now, we will create the Max Heap (or Priority Queue) for this: 
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Now, creating this Heap Structure from list L takes  time.(done only once.) 𝑂(𝑛)
Finally, the Heap Sort Algorithm can be written as follows: 

1.​ Given U={}. We append to U the root node of the Heap and pop it out from the Heap 
structure. (Note: to have a balanced tree we swap with the rightmost leaf node and sift 
down as shown in the diagram.) 

2.​ After the original root node has been removed we will balance the Heap Tree as shown 
below:  
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The time complexity of rebalancing the tree is:  𝑂(𝐻) = 𝑂(𝑙𝑜𝑔

2
𝑛)

3.​ Repeat Steps 1 and 2 until the Heap is empty. 
 
The Time Complexity for the Heap Sort is: 

 𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑂(𝑙𝑜𝑔
2
𝑛)

On solving we will arrive at: 
 𝑇(𝑛) = 𝑂(𝑛𝑙𝑜𝑔

2
𝑛)

3.​ Insertion Sort 
​ Insertion Sort is a simple sorting algorithm that works by building a sorted portion of the list one 

element at a time. It picks an element from the unsorted part and places it in the correct position 
within the sorted part. 

​  
​ We write the following pseudocode: 
​ sort_2(L){ 
​  
​ BASE: 
​ return L 𝑖𝑓(|𝐿| <= 1)
​  
​ DECOMPOSITION 
​  sort_2(L-{ }) 𝑀 = 𝘅

𝑛

 
​ RECOMPOSITION 

​ insert(M, ) 𝑀, = 𝘅
𝑛

​ return  𝑀,

​ } 
​ Time Complexity: 
​   𝑇(𝑛) = 𝑇(𝑛 − 1) + "𝐼𝑛𝑠𝑒𝑟𝑡"

Using Arrays we get  for insertion, therefore:       𝑂(𝑛)

​  𝑇(𝑛) = 𝑂(𝑛2)
 
​ Using BSTs or AVLs we get  for insertion, therefore: 𝑂(𝑙𝑜𝑔

2
𝑛)

   ​  𝑇(𝑛) = 𝑂(𝑛𝑙𝑜𝑔
2
𝑛)

 
4.​ Merge Sort 

Merge Sort splits the given data into 2 non-empty lists recursively and then builds back the 
original data by “merging” the lists two at a time in such a way that the “merged list” is sorted 
in position. The essence of the algorithm lies in 2 things:  

1.​ The recursive splitting should be done as a fraction of a list (generally 1/2) resulting in a 
recursive structure taking  to traverse. 𝑂(𝑙𝑜𝑔

2
𝑛)
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2.​ The merging step of the algorithm taking  time. 𝑂(𝑛)
​  
​ We write the following pseudocode: 
​ sort_3(L){ 
​  
​ BASE: 
​ return L 𝑖𝑓(|𝐿| <= 1)
​  
​ DECOMPOSITION 
​  sort_3( ) 𝑀

1
= 𝐿

1

​  sort_3( ) 𝑀
2

= 𝐿
2

​ RECOMPOSITION 
​ merge( , ) 𝑀 = 𝑀

1
𝑀

2

​ return  𝑀
​ } 
​ Time Complexity: 
​  𝑇(𝑛) = 𝑇(𝑘) + 𝑇(𝑛 − 𝑘) + "𝑀𝑒𝑟𝑔𝑒"
​  
​ We write the following pseudocode for the Merging algorithm: 
​  
​ merge( , ){ 𝑀

1
𝑀

2

​ :return  𝑖𝑓(|𝑀
1
| == 0) 𝑀

2

​ :return  𝑖𝑓(|𝑀
2
| == 0) 𝑀

1

 
​   𝑖𝑓 (𝑥

1
< 𝑦

1
):

​ {  merge( ) 𝑀, = 𝑀
1

− {𝑥
1
}, 𝑀

2

​ return } (𝑥
1
||𝑀,)

​  
​  𝑒𝑙𝑠𝑒:

​ {  merge( , ) 𝑀, = 𝑀
1

𝑀
2

− {𝑦
1
}

​ return } (𝑦
1
||𝑀,)

​ } 
 
​ Time Complexity for Merging: 
​  𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑂(1)
​  𝑇(𝑛) = 𝑂(𝑛)
​  
​ Final Time Complexity: 
​  𝑇(𝑛) = 𝑇(𝑘) + 𝑇(𝑛 − 𝑘) + 𝑂(𝑛)
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​ If : 𝑘 = 𝑐𝑜𝑛𝑠𝑡

​  𝑇(𝑛) = 𝑂(𝑛2)
​  
​ If : 𝑘 =  𝑛/2
​  𝑇(𝑛) = 𝑂(𝑛𝑙𝑜𝑔

2
𝑛)

 
​ Iterative Merge Sort 
​ Iterative Merge Sort is a variation of the Merge Sort algorithm that employs a bottom-up, non- 

recursive approach to sorting. Instead of recursively dividing the array into smaller subarrays, it 
begins by treating each element as an individual sorted subarray. These subarrays are then merged 
in pairs to form larger sorted subarrays. This process continues iteratively, doubling the size of the 
subarrays in each pass, until the entire array is merged into a single sorted sequence. By 
systematically merging sorted segments, Iterative Merge Sort efficiently organizes the data while 
maintaining the same time complexity as its recursive counterpart i.e.  𝑂(𝑛𝑙𝑜𝑔

2
𝑛)

Observe the following recursive structure to understand the iterative solution (red box) 

 
 

5.​ Quick Sort 
Our experience from merge sort allows us to devise another strategy. What if we could split the 
lists in such a way that we do not have to write a complicated merging algorithm? → In quick sort 
we divide the list into three parts: one part containing the pivot element and elements equal to the 
pivot element, one part containing everything less than the pivot element, and one part containing 
everything greater than the pivot element. Pivot Element is an arbitrary element from the list or 
in sophisticated procedures there are ways to choose the pivot element (example: median finding 
algorithm) as the performance of the algorithm depends on the pivot element we get in each stage.  
 
 

 
​  
​  
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We write the following pseudocode: 
 
sort_4(L){ 

​  
​ BASE: 
​ return L 𝑖𝑓(|𝐿| <= 1)
​  
​ DECOMPOSITION 
​ choose random  from L 𝑥

𝑖

​  𝐿
1

= 𝐿(𝑥 < 𝑥
𝑖
)

​  𝐿
2

= 𝐿(𝑥 == 𝑥
𝑖
)

​  𝐿
3

= 𝐿(𝑥 > 𝑥
𝑖
)

​  
​ RECURSIVE CALL 
​ sort_4( ) 𝑀

1
= 𝐿

1

​ sort_4( ) 𝑀
3

= 𝐿
3

​  
​ RECOMPOSITION 

​  𝑀, = {𝑀
1
||𝐿

2
||𝑀

3
}

​ return  𝑀,

​ } 
 
​ Time Complexity: 
​  𝑇(𝑛) = 𝑇(𝑘) + 𝑇(𝑛 − 𝑘) + "𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛"
​  "𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛" = 𝑂(𝑛)
​  𝑇(𝑛) = 𝑇(𝑘) + 𝑇(𝑛 − 𝑘) + 𝑂(𝑛)
 
​ If we get approximately good pivots such that  then: |𝐿

1
| ≃ |𝐿

3
|

​  𝑇(𝑛) = 𝑂(𝑛𝑙𝑜𝑔
2
𝑛)

 
​ If we get extremely bad pivots such that  and  are very lop-sided then: |𝐿

1
| |𝐿

3
|

​  𝑇(𝑛) = 𝑂(𝑛2)
 
Multiplication of 2 n-bit numbers: 
Suppose we have multiply the following two bit numbers: 
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The naive approach is to go through all the combination of numbers resulting in a Time Complexity of 

 𝑂(𝑛2)
 
Solution Refinement: 
We can refine our solution by recursively splitting the two numbers: 

 
Therefore, 

 𝑋 = 2
𝑛
2 𝑋

1
+ 𝑋

2

 𝑌 = 2
𝑛
2 𝑌

1
+ 𝑌

2

Hence, 

 𝑋 * 𝑌 = 2𝑛𝑋
1
𝑌

1
+ 2

𝑛
2 (𝑋

1
𝑌

2
+ 𝑌

1
𝑋

2
) + 𝑋

2
𝑌

2

 
The Time Complexity can be written as: 

 𝑇(𝑛) = 4𝑇( 𝑛
2 ) + 𝑂(𝑛)

 For the multiplication part 4𝑇( 𝑛
2 ):

 For the Additions 𝑂(𝑛):
 
Using Master’s Theorem: 

 𝑛
𝑙𝑜𝑔

2
4

> 𝑛
Therefore, the final time complexity becomes: 

 𝑇(𝑛) = 𝑂(𝑛
𝑙𝑜𝑔

2
4
) = 𝑂(𝑛2)

 
Further Refinement: 
The above multiplication can be rewritten as: 

 𝑋 * 𝑌 = 2𝑛𝑋
1
𝑌

1
+ (𝑋

1
+ 𝑋

2
)(𝑌

1
+ 𝑌

2
) − 𝑋

1
𝑌

1

Note: term gets cancelled out. 𝑋
2
𝑌

2
 

The Time Complexity becomes: 
 𝑇(𝑛) = 3𝑇( 𝑛

2 ) + 𝑂(𝑛)

 For the multiplication part 3𝑇( 𝑛
2 ):

 For the Additions 𝑂(𝑛):
 

Using Master’s Theorem, the final time complexity becomes:  𝑂(𝑛
𝑙𝑜𝑔

2
3
)

FOOD FOR THOUGHT: Optimise Multiplication and find Time Complexity of  𝑎𝑛
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