

Lecture scribe notes

 Date: 14th Jan, 2025

Topics Covered

 Basics of Divide and Conquer
 SorƟng

1. SelecƟon Sort
2. InserƟon Sort
3. Merge Sort
4. Quick Sort

 Merging K sorted lists

SubmiƩed by: Anupam Das

 24BM6JP09

1. IntroducƟon to SorƟng Algorithms

 What is SorƟng?

SorƟng is the process of arranging elements in specific order, either ascending or descending.
Sorted data is easier to view, perform analyses and feed further into other algorithms (e.g. binary
search). There are many different flavours of sorƟng algorithms such as bubble, inserƟon, merge
each with their own nuances and niƩy-griƫes. Most of them use Divide and Conquer approach to
perform sorƟng operaƟon.

2. Divide and Conquer Paradigm

 What is Divide and Conquer?

Divide and Conquer is a problem-solving technique in computer science and mathematics that
involves breaking a complex problem into smaller, more manageable subproblems. These
subproblems are solved independently, often recursively, and their solutions are then combined to
form the solution to the original problem.

Divide and Conquer Steps:

We first think of a recursive formulation and try to figure out how to divide the problem into
smaller identical sub-problems and solve the smaller problem and combine to get the answer to the
original problem. Broadly there are 3 steps involved.

1. Divide: Keep decomposing the problem into smaller sub-problems until Base Case B(z) is
reached.

<X1, X2, …, Xk> D(x) Decompostion step

2. Conquer: Call subroutine on each of these sub-problems and solve from the base case up.

Y1 – f(x1), Y2 – f(x2), …, Yk – f(xk)

3. Combine (Recomposition): Combine the solutions to each of the sub-problems

Y – R (Y1, Y2, Y2, …, Yk)

 Complexity: 𝑻(𝒏) = ∑ 𝑻(𝒏𝒊) + 𝑫(𝒌) + 𝑹(𝒌)𝒌
𝒊ୀ𝟏

Here T(ni) represents the smaller sub problems, D(k) is the decomposition step, R(k) is the
recomposition step.

A good algorithm will have a balance of T(n), D(k) and R(k). After the initial naïve solution is
formulated, the algorithm must be further evaluated to find the best split and
recombination choice to optimize the performance.

{2}

{1}

{2, 1}

{3}

{3, 2, 1} {5}

{5, 3, 2, 1} {7}

SorƟng Algorithms

a. SelecƟon Sort

 Concept and Working Principle

SelecƟon Sort is a simple comparison-based sorƟng algorithm that works by repeatedly selecƟng
the smallest (or largest, depending on order) element from the unsorted part of the list and placing
it at the beginning (or end) of the sorted part. It conƟnues unƟl the enƟre list is sorted. In short
remove the max element from the list and compute the rest recursively

 Pseudocode

Let L = {x1, x2, x3, …,xn)
SelecƟonSort (L) {
 if (|L| = 1) B (Base Case)

return L
xi <- findMax (L) D (DecomposiƟon)
L’ <- L – {xi}
M <- SelecƟonSort (L’) C (Calling funcƟon recursively)
return (xi||M) R (RecombinaƟon)

 }

 Recursion Tree Structure

 Base case reached

{5, 7, 1, 2, 3}

{7} {5, 1, 2, 3}

{5} {1, 2, 3}

{3}

{1, 2}

{1}

{2}

{7, 5, 3, 2, 1}

 Time Complexity Analysis

T(n) = T(n-1) + O(n)

The iniƟal array is broken down into two, one array containing just the max element finding which is
O(n) and rest n-1 elements. Solving this we get the Ɵme complexity O(n2).

Here, findMax runs over and over again at each step of decomposiƟon, thus worsening the Ɵme
complexity. DecomposiƟon and recomposiƟon can be played around with e.g. by using a binary tree
structure to improve the Ɵme complexity.

b. InserƟon Sort

 Concept and Working Principle

InserƟon Sort is a simple sorƟng algorithm that works by building a sorted porƟon of the list one
element at a Ɵme. It picks an element from the unsorted part and places it in the correct posiƟon
within the sorted part.

 Pseudocode

inserƟonSort (L) {
if (|L| <= 1)

return L B (Base case)
M <- inserƟonSort (L – {xn}) D (DecomposiƟon)
M’ <- insert (M, xn) R (RecombinaƟon)
return M’

}

 Recursion Tree Structure

 [1, 2, 3, 4, 5]

 [5]

 [1, 2, 3, 4]

 [2]

 [1, 3, 4]

 [1]

 [3, 4]

 Base case reached [4] InserƟng “4” in the correct place in sorted array and repeaƟng.

{3, 4, 1, 2, 5}

{3, 4, 1, 2}

{3, 4, 1}

{3, 4}

{3}

 Time Complexity Analysis

T(n) = T(n-1) + “Insert”

Solving this we get the Ɵme complexity as O(n2). We can use a binary tree (AVL) and keep balancing
it to opƟmize this algorithm. O(nlogn) Ɵme to create binary tree and O(1) Ɵme for inorder traversal.

 IteraƟve SoluƟon
InserƟon sort can also be implemented using array and iteraƟve approach.

c. Merge Sort

 Concept and Working Principle

Merge Sort is a divide and conquer algorithm that recursively breaks down a problem into smaller
subproblems unƟl they become simple enough to be solved directly. It is a sorƟng algorithm that
divides the input array into two halves, sorts each half, and then merges the sorted halves to
produce the sorted array.

 Pseudocode
mergeSort (L) {
 if (|L| <= 1) B (Base case)
 return L
 Split L into two non-empty sets L1 and L2 D (DecomposiƟon)
 M1 <- mergeSort (L1) C (Calling sub-rouƟnes)
 M2 <- mergeSort (L2)

 M <- merge (M1, M2) R (RecombinaƟon)
 return M
 }
 merge (M1, M2) {
 if (|M1| = 0)
 return M2

 if (|M2| = 0)
 return M1

 if (x1 <= y1)
 M’ <- merge (M1 - {x1}, M2)
 return (x1||M’)
 else

M’ <- merge (M1, M2 - {y1})
 return (y1||M’)
 }

x a b Find the correct place to insert the last
element, which is O(n). Therefore,
overall Ɵme complexity comes out as
O(n2)

Let M1 = {x1, x2, x3, …, xn}
M2 = {y1, y2, y3, …, ym}

 Recursion Tree Structure

 Time Complexity Analysis
T(n) = T(k) + T(n-k) + “merge” ----(i)
For the merge secƟon
T(n) = T(n-1) + O(1) -> Solving this we get Ɵme complexity as O(n). Combing this with eq. i we get
T(n) = T(k) + T(n-k) + O(n)

If k = 1 then this solves as O(n2)
If k = n/2 then O(nlogn)

 IteraƟve merge sort

IteraƟve Merge Sort is a variaƟon of the Merge Sort algorithm that employs a boƩom-up, non-
recursive approach to sorƟng. Instead of recursively dividing the array into smaller subarrays, it
begins by treaƟng each element as an individual sorted subarray. These subarrays are then merged
in pairs to form larger sorted subarrays. This process conƟnues iteraƟvely, doubling the size of the
subarrays in each pass, unƟl the enƟre array is merged into a single sorted sequence. By
systemaƟcally merging sorted segments, IteraƟve Merge Sort efficiently organizes the data while
maintaining the same Ɵme complexity as its recursive counterpart, O(nlogn).

{5, 3, 1, 6, 2}

{5, 3} {1, 6, 2}

{5} {3} {1} {6, 2}

{6} {2}

{3, 5} {2, 6}

{1, 2, 6}

{1, 2, 3, 5, 6}

Divide down to
single element

Sort and
recombine

d. Quick Sort
 Concept and Working principle

Quick Sort is a divide-and-conquer sorƟng algorithm that sorts an array by parƟƟoning it into
smaller subarrays based on a pivot element. The pivot divides the array into two parts: elements
less than the pivot and elements greater than or equal to the pivot. This process is recursively
applied to the subarrays unƟl the enƟre array is sorted.

 Pseudocode

quickSort (L) {
 if (|L| <= 1) B (Base Case)
 return L
 choose random xi from L
 create L1 = {x | x < xi} D (DecomposiƟon)
 and L2 = {x | x > xi}
 M1 <- quickSort(L1) C (Calling sub-rouƟnes)
 M2 <- quickSort(L2)
 return (M1 || {x} || M2) R (RecombinaƟon)
}

 Time Complexity Analysis

T(n) = T(k) + T(n-k) + O(n)

1. Best case: k = n/2 O(nlogn)
2. Average case: O(nlogn)
3. Worst case: O(n2)

Merging N lists

 Concept and Working Principle

We are given n sorted lists and we have to merge all of them. We first try a naïve approach taking
any two lists and merging them and merging the rest with the result.

CounƟng the number of operaƟons we have to do (merging two array of size m, n take m+n
operaƟons)

7 2 4 10 15

9

13

23 38

Thus total no. of operaƟons
9+13+23+38 = 83

Time complexity becomes O(n2

 However, if we change our order of selecƟng list and count the total no. of operaƟons

Therefore, we see that the total number of operaƟons changes if we change our order of choosing
the lists.

 Time complexity Analysis
Analysing the costs we get the total Ɵme complexity as
 O(nlogn)+O(klogn)=O(klogn)

7 2 4 10 15

13

6

23

38

Thus total no. of operaƟons
6+13+23+38 = 80

