
 Algorithm Design Paradigm 

->Divide and Conquer 

->Dynamic Programming 

->Greedy Algorithms 

->Branch and Bound 

->Combinatorial Exploration 

Divide and Conquer Paradigm: 

->Base case: B(z) 

->Decomposition mechanism 

 <X1,X2,…,Xk> <- D(X) 

->Substructure calls 

 Y1<-f(X1),…,Yk<-f(Xk)  

->Recomposition mechanism 

 Y<-R(Y1,Y2,…,Yk) 

Complexity: 𝑻(𝒏) = ∑ 𝑻(𝒏𝒊)
𝒌

𝒊=𝟏
 + D(n) + R(k) 

SEARCHING 

Searching from unordered set: 

search_u(L,x) { // returns true or false based on x being present in L 

 L={x1,x2,…,xn} 

 if(|L|=1){ 

  if(x=x1) return true 

  else return false} 

 split L into L1,L2  //(non-empty sets) 

 if(search_u(L1,x)) 

  return true 

 else if(search_u(L2,x)) 

  return true 

 else return false } 

 



T(n)=T(k)+T(n-k)+O(1)  

If k=1: T(n)=O(n) (from finding maximum element algorithm) 

If splitting the set into one element and rest other elements (k=1) gives the best complexity 

solution then the approach can also have been iterative as well as recursive. 

Problem lower bound  

The problem lower bound is the minimum time(or steps) needed to solve the problem 

entirely, it is not dependent on the algorithm we choose it is fixed for a problem. 

For example in the above searching from unordered set the problem lower bound is Ω(n). We 

cannot improve the complexity below O(n). Suppose we assume that we can improve it 

further, then by contradiction it can be proved that if the complexity is less than n for the size 

n input we end up missing seeing one element and that element itself might be the element 

we are searching for in worst case. 

The constant improvement includes  

• Push up the problem lower bound and prove it 

• Push down and prove algorithm upper bound 

So that tight bound is achieved. If the problem lower bound and algorithm upper bound are 

equal then the algorithm is said to be optimal. 

Search in an ordered set: 

Advantage: Can probe at any element and throw away a chunk of data (either less than or 

greater than the required element) before continuing search. (Reduces the domain of search) 

search_o(L,x){ 

 if(|L|=0) return false 

 if(xi>x) 

  if(search_o(L-{xi,…,xn},x)} 

   return true 

  else return false 

 else 

  if(search_o(L-{x1,…,xi},x)} 

   return true 

  else return false } 

 

 

 



T(n)=max{T(i-1),T(n-i-1)} + O(1)  

The max denotes that in worst case we have to search the set that has more number of 

elements. 

Case(i): i=1 

T(n)=T(n-1)+O(1) 

T(n)=O(n) 

Case(ii): i=k [some constant] 

T(n)=T(n-k)+O(1) 

T(n)=O(n) [The constant split is also as bad as the one and the rest split] 

Case(iii): i=n/2 

T(n)=T(n/2)+O(1) 

T(n)=log2n + 1[improvement over O(n)] 

Best case 

QUESTIONS:  

1.Why i=n/2? 

T(n)=T(n/2)+O(1) 

T(n)=log2n + 1 [improvement over O(n)] 

Best case 

2.Why not n/3 or 2n/3? 

 if i=n/3  

T(n)=T(n/3)+O(1) 

T(n)=log3n +1 

log3n > log2n  

Similarly, if i=2n/3  

T(n)=T(2n/3)+O(1) 

T(n)=log
(
3

2
)
n + 1 

log
(
3

2
)
n > log2n  

The number of probings(steps) required is more in cases other than i=n/2 

 

 



3.Why not probe twice( in same step)? 

 T(n)=T(n/3)+2 [If we probe twice in a single step we have 3 subproblems of size n/3 

each] 

 T(n)=T(n/3k) + 2k 

 T(n)=2log3n  

 If we probe three times in a single step we get 4 subproblems of size n/4 each. In such 

case 

 T(n)= 3log4n  [worse than 2log3n] 

Can complexity be less than order of logn  for search in ordered set ? 

If the input size is ‘n’ it needs logn bits to be stored in the memory. To search a size n set for 

an element x we need to read the size of input(logn bits). Therefore complexity cannot be less 

than logn. We can choose to not see every element(throw away a chunk of data either less 

than or greater than the required element) but we have to see(read) the input size. 

TRY: 

Search a target set S from input set L where: 

i. L is ordered, S is ordered [Best case] 

ii. L is ordered, S is unordered 

iii. L is unordered, S is ordered  

iv. L is unordered, S is unordered [|L|=n,|S|=m,O(mn), L can be sorted using 

tournament sort in logn time to get case(ii)]  

All of the above variants are finding intersection of two sets. 

Try using binary search tree data structure and array. 

For binary search tree complexity is of order nlogn. 

SORTING 

L={x1,x2,…,xn} 

Approach 1: Max removal 

Sort1(L){ 

 if(|L|<=1) return L 

 xi<-findMax(L) 

 L’<-L-{xi} 

 M<-sort1(L’) 

 return (xi||M) } // where || is concatenation 

 



T(n)=T(n-1)+O(n)  => T(n)=O(n2)  

[The decomposition step is finding the maximum element which is of order O(n).] 

Called Selection sort because we select the max element and sort it into right place in every 

subproblem. 

The number of operations can be improved in max finding step to (3n/2)-1, but the order of 

sorting remains n2. 

Two way selection sort - finding minMax in one step. 

Freezing the decomposition mechanism is not the only solution, trying different mechanisms 

by playing around with balance and split of recursion tree can improve the complexity. 

Heap Sort – Tournament structure 

Balance the splits so that finding first max element reduces the complexity of finding 

successive maximum elements( to logn order) 

Heap data structure when represented as an array every ith  element is greater than (2i)th and 

(2i+1)th  elements. 

Heap is always first filled towards left. 


