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RECAP 

We solved and designed algorithms for various problems step by step in previous classes, and while 

solving “Fibonacci Numbers,” we found Identical subproblems during solution refinement. 

 

 

 

 

 

 

 

We found that we were computing  𝐹(𝑛) each time from scratch which was not needed. 

 Never recompute a subproblem 𝑭(𝒌), 𝒌 ≤ 𝒏 if it has been computed before. 

This technique of remembering previously computed values is called “MEMOIZATION.” 

And this technique gives rise to  

Dynamic Programming (DP) Algorithm 

DP  ≈ recursion + memoization (i.e. re-use) 

It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has 

repeated calls for the same inputs, we can optimize it using Dynamic Programming. 

The idea is to store the results of subproblems so that we do not have to re-compute them when 

needed later. This simple optimization typically reduces time complexities from exponential to 

polynomial. 

We will use this in our Fibonacci numbers problem and solve it. We will do it in two ways- recursive 

version and iterative version. 

Fibonacci numbers 

Recursive version (Top Down) 

Declare a global array of size(n) and call it FIB[ ]. 

Create a Boolean array, DONE[ ], where DONE[0] = 1, DONE[1] = 1, all others are 0. 

 

Fig1.1 Recursion without memoization 

Figure 1.2 Recursion if memoization is used 



 

Function eval_f(n): 

    If DONE(n) = 1 Then 

        Return Fib(n) 

    Else 

        Fib(n) = eval_f(n - 1) + eval_f(n - 2) 

        DONE(n) = 1 

        Return Fib(n)     

This comes with initial conditions(base conditions) 

 𝐹𝑖𝑏(0) = 0 ,   𝐷𝑂𝑁𝐸(0) = 1 𝑎𝑛𝑑 𝐹𝑖𝑏(1) = 1    𝐷𝑂𝑁𝐸(1) = 1 

 𝑻𝒊𝒎𝒆 𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 𝑶(𝒏): as each Fibonacci number is computed once. 

𝑺𝒑𝒂𝒄𝒆 𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 𝑶(𝒏): due to the memoization table and recursion call stack.  

Iterative version (Bottom-Up) 

(calculates Fibonacci numbers starting from smallest values) 

Function eval_f(n): 

    Fib(0)=0    Fib(1)=1 

    for i=2,3,…..,n 

  { z ⟵ Fib(0) +Fib(1) 

   Fib(0)⟵ Fib(1) 

        Fib(1)⟵ z 

       } 

    Return Fib(1)  

 𝑻𝒊𝒎𝒆 𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 𝑶(𝒏): loop runs (n-1) times to calculate F(n). 

𝑺𝒑𝒂𝒄𝒆 𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 𝑶(1): only uses two values to store current and previous 

Fibonacci numbers.  

 

Generalization 

In general, we can say the following  

𝑓(𝑛) = {
𝑓(𝑔(𝑛)) + 𝑓(ℎ(𝑛)), 𝑖𝑓 𝑐(𝑛) = 𝑓𝑎𝑙𝑠𝑒

       𝑏(𝑛)                   , 𝑖𝑓 𝑐(𝑛) = 𝑡𝑟𝑢𝑒
 

Where 𝑐(𝑛) is BASE condition. 

and include one more case, if it’s a cycle, i.e., F(n) calling F(n) again.  In that case we tell it to exit. 

Figure 1.3 Bottom-Up 
approach 



DONE(n) → 0     if not computed  

DONE(n) → 1     if it’s a CYCLE 

DONE(n) → 2     if already computed 

For Fibonacci numbers 

Function eval_f(n): 

   if(DONE(n)=2){ 

 Fib(n)⟵ b(n) 

 Return Fib(n) 

 } 

    if(DONE(n)=1){‘CYCLE’ exit} 

    DONE(n)=1 

    X⟵g(n), y⟵h(n) 

    Fib(n)⟵eval_f(x) + eval_f(y) 

    DONE(n)=2 

    return Fib(n) 

We will design an algorithm for another interesting problem, the coin selection problem. 

Coin Selection Problem 

Given a set C of n coins having denomination values {C1, C2, · · · , Cn} and a desired final value of V, 

find the minimum number of coins to be chosen from C to get an exact value of V from the sum of 

denominations of the selected subset. 

Coins (U,P,x,y,n) 

U: set of coins selected till now 

P: remaining set of coins from which we can select 

x: value of set S 

y: remaining value desired to chosen from T 

n: number of coins selected 

⟨U, n⟩ = Coins(U,P,x,y,n) 

This is the output where U is the coins we used, and n is the number of coins used. 

Base conditions 

• If (y = 0) return ⟨U, n⟩                     (as it’s  a solution or at least initial solution) 

• If (y < 0) return ⟨NULL, ∞⟩         (it means we have gone more than desired value and so no solution) 

• If (P = NULL) return ⟨NULL, ∞⟩         (as  no coin is left and y ≠ 0 as we have checked that first) 

• Pmin = NULL, dmin = ∞ 



From naïve approach, We can use a brute force recursion and try every conceivable combination of 

taking coins to equal the desired amount, adding them all up to determine how many ways there are to 

get the desired amount. We will take each element and then next till we reach our base conditions and 

we will do it for all the elements. 

Starting with the full set of coins {8, 6, 5, 2, 1} and a target sum of 11, the algorithm recursively 

selects one coin and then continues exploring combinations with the remaining coins. For example, 

starting with coin 8, it explores all combinations with the remaining coins {6, 5, 2, 1}, then moves to 

coin 6, and so on. This exhaustive search continues until we reach the BASE conditions.  

In the diagram, it has been done for only two branches, but it will happen for all the branches. 

 

The algorithm for this approach is: 

Coins(U,P,x,y,n){ 

if (y = 0) return (U, n) 

if (y < 0) return (NULL, ∞)      

if (y < 0) return (NULL, ∞)      

Pmin = NULL, dmin = ∞ 

for(i=1 to n){ 

  U’⟵ U ⋃ {Ci} 

  P’⟵ P - {Ci}  

       } 

⟨s,m⟩ = Coins(U’,P’, x+Ci, y-Ci, n+1) 

if (m<dmin) { 

  dmin ⟵ m 

  Umin ⟵ s 

        } 



}  

return (Umin,dmin) 

Time Complexity  

For this, let’s take the worst case in which our value decreases by only 1 each time, and also, in each 

branch, that is, for every single cell, there are n calls(for loop). Therefore, the recurrence relation is : 

𝑻(𝒏) = 𝒏𝑻(𝒏 − 𝟏) + 𝑶(𝒏) 

And if we solve this either by substitution. Substituting recursively, it expands to: 

𝑢𝑠𝑖𝑛𝑔  𝑇(𝑛 − 1) = (𝑛 − 1) ⋅ 𝑇(𝑛 − 2) + 𝑂(𝑛 − 1) 

𝑝𝑢𝑡 𝑖𝑡 𝑏𝑎𝑐𝑘 𝑖𝑛 𝑎𝑛𝑑 𝑤𝑒 𝑔𝑜𝑡 

𝑇(𝑛) = 𝑛(𝑛 − 1)𝑇(𝑛 − 2) + 𝑛𝑂(𝑛 − 1) + 𝑂(𝑛) 

𝑇(𝑛) = 𝑛(𝑛 − 1)(𝑛 − 2)𝑇(𝑛 − 3)  + 𝑛𝑂(𝑛 − 1)  + 𝑂(𝑛) 

Continuing this pattern leads to: 

𝑻(𝒏) = 𝒏! +  𝒍𝒐𝒘𝒆𝒓 𝒐𝒓𝒅𝒆𝒓 𝒕𝒆𝒓𝒎𝒔. 

 O(nⁿ) is sometimes used as an upper bound for n! because: 

𝑛! ≤ 𝑛𝑛  

This simplification avoids dealing with Stirling’s approximation and factorials. Thus, the time 

complexity is 𝑂(𝑛𝑛) 

We can also see from the recursive tree.  

1st level - n nodes, then (n-1) then (n-2) and so on... 

Total nodes - n * (n-1) * (n-2) ...... = n! (Permutation) 

But it is very bad as it’s exponential and also notice Given C= {8,6,5,2,1} V =11. The minimum 

solution {6,5} will come from path 6 -> 5 and path 5 -> 6, and also, we are calculating for the same 

case again and again in different branches. This is going to generate a graph, and identical nodes will 

be coming. So, we have identified identical sub-problems from our algorithm. 

Solution Refinement 

To avoid solving identical subproblems in the coin selection problem, we can apply strategy by 

creating two cases at each step: one where we include the current coin in the solution and another 

where we exclude it. For each subsequent branch, we apply the same approach to the remaining coins. 

This method ensures that once a coin (e.g., 8) is included in one branch, it is excluded from the other. 

As a result, if we choose coin 6 in the branch without coin 8, it prevents the formation of identical 

subproblems and eliminates redundant computations. 

The Recursive Tree  will now look like following  



 

At each node, the algorithm makes a binary decision: either include the current coin in the 

solution or exclude it. This decision branches the recursion, progressively reducing the target 

sum. For example, starting from the full set, one branch includes coin 8 (reducing the sum to 

3), while the other excludes it and continues with the remaining coins. This process continues 

until either a valid solution is found (e.g., {8, 2, 1}) or the path leads to an invalid state (e.g., 

a negative sum or no remaining coins) (BASE conditions). This is called as Inclusion-

Exclusion Principle. 

This ensures we don’t have variable branching like in the previous case. It will have a binary 

branch, one for the included list and one for the excluded list. This will also generate all 

subsets. 

 

Time Complexity  

For this, let’s take the worst case in which our value decreases by only 1 each time, and also, from 

each branch there are 2 branches. Therefore, the recurrence relation is : 

𝑻(𝒏) = 2𝑻(𝒏 − 𝟏) + 𝑶(𝟏) 

Solving it by substitution  

𝑇(𝑛 − 1) = 2𝑇(𝑛 − 2) + 𝑂(1) 

Substituting 𝑇(𝑛 − 1) 

 𝑇(𝑛) = 2(2𝑇(𝑛 − 2) + 𝑂(1)) + 𝑂(1) 

 𝑇(𝑛) = 22𝑇(𝑛 − 2) + 2 ⋅ 𝑂(1) + 𝑂(1) 

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑛𝑔 𝑡ℎ𝑖𝑠 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛:  

𝑇(𝑛) = 2𝑘𝑇(𝑛 − 𝑘) + ∑ 2𝑖  𝑂(1)

𝑘−1

𝑖=0

  

 
Let 𝑘 = 𝑛, so 𝑇(𝑛 − 𝑛) = 𝑇(0)  and 𝑇(0) = 1. 



𝑇(𝑛) = 2𝑛𝑇(0) + ∑ 2𝑖  𝑂(1)

𝑛−1

𝑖=0

 

𝑇(𝑛) = 2𝑛 + 𝑂(2𝑛)                              𝑢𝑠𝑖𝑛𝑔 ∑ 2𝑖  = 2𝑛  − 1 

𝑛−1

𝑖=0

 

  
 

We get time complexity 𝑶(𝟐𝒏) 

This is better than the previous case, but the time complexity is still exponential. 

Notice that now there is no same snapshot of problems that we are solving again and again, 

but there can be cases that do come under identical subproblems.  

When the same number of coins have already been given the same amount of value. 

 

If C1+C3 = C2+C4 and we used two coins in 

both cases, we do not need to do it repeatedly. 

 

To solve this problem, there are only two 

parameters, the number of coins(n) and 

sum(amount), that change in the recursive 

solution. So, we create a 2D matrix of size 𝒏 ∗
(𝒔𝒖𝒎 + 𝟏) for memoization. 

 

                                                     

 

 

 

 

 

 

 

Each cell in 𝒊𝒕𝒉 𝑟𝑜𝑤 𝑎𝑛𝑑 𝒋𝒕𝒉 𝑐𝑜𝑙𝑢𝑚𝑛 gives (𝑼𝒎𝒊𝒏, 𝒏𝒎𝒊𝒏) using coins till 𝒊 and making value 

sum 𝒋. We initialized the matrix with (𝑵𝑼𝑳𝑳, ∞).  
That is, (2,3) cell is giving a set of coins from {1,2} to make the sum of value 4, and our 

solution will be last cell (intersection of last row and last column) that is using all coins 

and getting our desired value.  

The memoization matrix for our problem looks like following: 

  

 

 

W 0 1 2 3 4 5 6 7 8 9 10 11 

coi

ns 

∅ ∅
0 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

1 ∅
0 

{1}    

1 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 



2 ∅ 

0 

{1}    

1 

{2}    

1 

{1,2}    

2 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

5 ∅ 

0 

{1}    

1 

{2}    

1 

{1,2}    

2 

NULL,

∞ 

{5}    

1 

{1,5}    

2 

{2,5}    

2 

{1,5,2}    

3 
NULL,

∞ 

NULL,

∞ 

NULL,

∞ 

6 ∅ 

0 

{1}    

1 

{2}    

1 

{1,2}    

2 

NULL,

∞ 

{5}    

1 

{6}    

1 

{1,6}    

2 

{2,6}    

2 

{1,2,6}    

3 
NULL,

∞ 

{6,5}    

2 

8 ∅ 

0 

{1}    

1 

{2}    

1 

{1,2}    

2 

NULL,

∞ 

{5}    

1 

{6}    

1 

{1,6}    

2 

{8}    

1 

{1,8}    

2 

{2,8}    

2 

{6,5}  

2 

 

Following is the way to fill the table's cells: to fill, we will either include the coin of that row 

or not include the coin of that row. W is target value. 

• If coin(i) > w, then coin(i) will not be included and we will just take value from upper 

cell. 

• If coin(i) ≤ w then we will consider both cases, including the coin as well as excluding it 

and filling the 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒𝑚. 

 

Time Complexity 

𝑶(𝒏 ∗ 𝑽) 

This is called pseudo-polynomial complexity due to the presence of V, as it depends on the target 

value. 

• n: Number of coin denominations. 

• V: Target sum. 

• Every subproblem (combination of coin index and remaining sum) is solved once due to 

memoization. 

Space Complexity: 

𝑶(𝒏 ∗ 𝑽) 

• Space for the 2D memoization table of size (𝑛 + 1) ∗ (𝑉 + 1). 

• Additional space for the recursion stack (maximum depth N), but it's absorbed in 

𝑂(𝑛 ∗ 𝑉) 

Now during implementation, the time complexity can be 𝑂(𝑉). 

Each DP state only depends on the previous row (i.e., results from the previous coin). Instead 

of storing the entire 𝒏 ∗ 𝑽 table, use only two rows: 

1. Current row for the current coin. 

2. Previous row for the previous coin. 

H.W Do the above problem if you have infinite coins of all 

denominations. Make the table like the above, too. 



We just need to know two cases, including the coin(current row) or excluding it(previous 

row). This reduces space usage from O(n × V) to O(2 × V), which simplifies to O(V). 

 

 

 

 

A set that forms a matroid can be used to solve the coin-changing problem by using a 

greedy approach (it always selects the coin with the largest denomination not 

exceeding the remaining sum). 

H.W Search about matroid property and greedy algorithm will be discussed in next 

session. 


