
Foundations	of	Algorithm	Design	and	Machine	Learning:	Scribe	
Date:	8th	January,	2025	

	
	
	
	
	
	
	

Algorithm	Design	Steps:	
	

Initial	Solution	
• Recursive	Formulation	
• Correctness	
• Analysis	

Exploration	of	Possibilities	
• Decomposition	
• Recursive	Structure	
• Recomposition	

Solution	Refinement	
• Balance/Split	
• Identical	Sub-Problems	

Find	Solution	
• Traversal	of	recursive	structure	
• Prune	

Data	Structuring	
• Reuse	Computation	
• Space	Complexity	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Example	1:	Finding	the	largest	and	smallest	number	
	
	
	

	
Initial	Solution	
	
<m,M>	<-	minMax1	(L)		

{	
If	(|L|)=1)	return	(x1,x1)	

L`<-L-{x1}	
<m’,M’><-minMax2(L)	
	
If	(x1>m’)		

m<-m’	
else		
	 m<-x1	
if(x1>M’)	
	 M<-x1	
Else	
	 M<-M’	
}	 	
	 	

The	input	list	is	divided	recursively	into	smaller	sublists	until	each	sublist	contains	only	one	
element.	Once	the	sublists	are	reduced	to	single	elements,	comparisons	are	made	as	the	results	
are	merged	back	up	the	recursion	tree	
	
	
Time	Complexity	
	
	
	

The	recurrence	relation	for	the	number	of	comparisons	is:	T(n)=T(n−1)+2	
	

Expanding	this	recurrence:	
	

T(n)=T(n−2)+2+2	
T(n)=T(n−3)+2+2+2	

⋮	
T(n)=T(1)+2(n−1)	
Since	T(1)=0,	we	get:	

T(n)=2(n−1)	
	
	

For	n=7,	the	total	number	of	comparisons	is:	
T(7)=2(7−1)=12	

	
	
	

	

#comparisons	=	12	

Alternate	Solution	
Adding	a	separate	condition	for	|L|=2	to	reducing	the	number	of	comparisons	when	number	of	
elements	is	2	from	2	to	1	and	modifying	the	divide-and-conquer	method	to	further	reduce	the	
number	of	comparisons.	

<m,M>	<-	minMax2(L)	
	 {	
	 If	(|L|=1)		

return	(x1,x1)	
If	(|L|=2)	{	if	x1>x2		

return	(x1,x2)	
					Else	

Return	(x2,x1)	
				}	

	 Split	L	into	two	non-empty	sets	L1,L2	
	 <m1,M1>-minMax(L1)	

<m2,M2>-minMax(L2)	
If	(m1>m2)		

{	
m<-m2	
If	(M1>M2)	

	 	 	 M<-M1	
Else	

	 	 	 M<-M2	
}	

Else	
m<-m1	

	 	 If	(M1>M2)	
	 	 	 M<-M1	

Else	
	 	 	 M<-M2	

}	
	
	
	

Splitting	Method	1	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

#comparisons = 10

Modifying	the	splitting	criteria	in	method	1	to	reduce	the	number	of	comparisons.	
	
Splitting	Method	2	
	
Splitting	L	into	two	lists	containing	even	number	of	elements	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Split	Method	1:	Arbitrarily	into	two	sublists.		
Split	Method	2:	Into	two	sublists	with	even	number	of	elements	wherever	possible.	
	
Splitting	evenly	reduces	comparisons	because	it	balances	the	recursive	calls.	This	
approach	optimizes	the	divide-and-conquer	strategy	for	finding	the	minimum	and	
maximum	in	a	list.	
	
As	a	thumb	rule,	while	splitting	even	number	of	elements,	always	split	into	two	groups	
of	even	number	of	elements.	While	splitting	odd	number	of	elements,	always	split	into	
one	group	of	even	number	of	elements	and	one	of	odd.	
	
	
Average	Time	Complexity		
	
To	Jind	the	average	time	complexity	or	average	number	of	comparisons	for	the	splits	(1	
and	n-1),	(2	and	n-2),	and	so	on,	
	

𝑹𝒆𝒄𝒖𝒓𝒓𝒆𝒏𝒄𝒆	𝑹𝒆𝒍𝒂𝒕𝒊𝒐𝒏	𝒇𝒐𝒓	𝑻(𝒏):	

𝑇ℎ𝑒	𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒	𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	𝑖𝑠	𝑔𝑖𝑣𝑒𝑛	𝑎𝑠:	

𝑇(𝑛) = 𝑇(1) + 𝑇(𝑛 − 1) + 2	

𝑇(𝑛) = 𝑇(2) + 𝑇(𝑛 − 2) + 2	

𝑇(𝑛) = 𝑇(3) + 𝑇(𝑛 − 3) + 2	

⋮	

𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑇(1) + 2	

#comparisons = 9

𝑺𝒖𝒎𝒎𝒊𝒏𝒈	𝑨𝒍𝒍	𝑻𝒆𝒓𝒎𝒔:	

(𝑛 − 1)𝑇(𝑛) = 	 �2𝑖 = 1�𝑛 − 1𝑇(𝑖) + 2(𝑛 − 1)�								(1)	

𝑊𝑟𝑖𝑡𝑖𝑛𝑔	𝑡ℎ𝑒	𝑠𝑎𝑚𝑒	𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡	𝑓𝑜𝑟	𝑛 − 1𝑛 − 1:	

	(𝑛 − 2)𝑇(𝑛 − 1) = [2𝑖 = 1∑𝑛 − 2𝑇(𝑖) + 2(𝑛 − 2)].									(2)	

𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕𝒊𝒏𝒈	(𝟐)𝒇𝒓𝒐𝒎	(𝟏):	

	(𝑛 − 1)𝑇(𝑛) − (𝑛 − 2)𝑇(𝑛 − 1) = 2𝑇(𝑛 − 1) + 2

(𝑛 − 1)𝑇(𝑛) − 𝑛𝑇(𝑛 − 1) = 2	

𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒚𝒊𝒏𝒈	𝑩𝒐𝒕𝒉	𝑺𝒊𝒅𝒆𝒔	𝒃𝒚	 �
𝟏

𝒏 − 𝟏
–
𝟏
𝒏�
:	

𝑇(𝑛)
𝑛

–
𝑇(𝑛 − 1)
𝑛 − 1

= 	2	 �
1

𝑛 − 1
−
1
𝑛�

𝑾𝒓𝒊𝒕𝒊𝒏𝒈	𝒂𝒃𝒐𝒗𝒆	𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏	𝒇𝒐𝒓	𝒏, 𝒏 − 𝟏, 𝒏 − 𝟐, 𝒂𝒏𝒅	𝒔𝒐	𝒐𝒏:

𝑇(𝑛 − 1)
𝑛 − 1

–
𝑇(𝑛 − 2)
𝑛 − 2

= 	2	 �
1

𝑛 − 2
−

1
𝑛 − 1�

𝑇(𝑛 − 2)
𝑛 − 2

–
𝑇(𝑛 − 3)
𝑛 − 3

= 	2	 �
1

𝑛 − 3
−

1
𝑛 − 2�

⋮

𝑇(2)
2

–
𝑇(1)
1

= 	2	 �
1
1
−
1
2�

𝑨𝒅𝒅𝒊𝒏𝒈	𝑨𝒍𝒍	𝑻𝒆𝒓𝒎𝒔:	

𝑇(𝑛)
𝑛

= 2�1 −
1
𝑛�
	

𝑭𝒊𝒏𝒂𝒍	𝑹𝒆𝒔𝒖𝒍𝒕:	

𝑇(𝑛) = 2(𝑛 − 1)	

	

	

	
	
	
	
	
	
	
	
	
	

	
	

Example	2:	Finding	the	largest	and	second	largest	number	
	
Possible	Solution	
	
<m,M>	<-	max_and_2ndmax(L)	
	 {	
	 If	(|L|=1)		

return	(x1,x1)	
If	(|L|=2)	{	if	x1>x2		

return	(x1,x2)	
					Else	

Return	(x2,x1)	
				}	

	 Split	L	into	two	non-empty	sets	L1,L2	
	 <m1,M1>	<-	max_and_2ndmax	(L1)	

<m2,M2>	<-	max_and_2ndmax	(L2)	
If	(m1>m2)		

{	
m	<-	m1	
If	(m2>M1)	

	 	 	 M<-m2	
Else	

	 	 	 M<-M1	
}	

Else	
m	<-	m2	

	 	 If	(m1>M2)	
	 	 	 M<-m1	

Else	
	 	 	 M<-M2	

}	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

OR

OR

	
	

Grand	Slam	Tournament	Structure	
	
To	find	the	second	largest	number,	we	can	take	a	bottom	up	approach,	(the	grand-slam	
tournament	structure).	The	unique	characteristic	about	the	structure	is	that	en-route	to	
becoming	the	champion,	the	second	largest	number	would	have	must	been	beaten	by	the	largest	
number.	
	
So	to	find	the	2nd	largest	number:	

• Maintain	the	hierarchical	tree	structure	as	it	is.	
• Replace	the	largest	number	with	‘-infinity’	in	the	maintained	tree	structure.	
• Check	for	the	second	largest	number	ONLY	on	the	nodes	where	the	largest	number	had	

competed.	
	

Data	Structuring	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	 	
	

	

	

	

	

	

	

	

	

	

	

Case 1: Heap Case 2: Array

	

	

	

	

If	ii	is	the	index	of	the	largest	element,	then:	

𝐶𝑜𝑚𝑝𝑎𝑟𝑒	𝑖# = V
𝑖
2W − 1,	

𝑇ℎ𝑒𝑛	𝑖## = \
𝑖#

2] − 1,	

𝑎𝑛𝑑	𝑠𝑜	𝑜𝑛, 𝑢𝑛𝑡𝑖𝑙	𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔	𝑙𝑒𝑣𝑒𝑙	0.	

Time	Complexity	

Number	of	comparisons	required	to	Jind	the	largest	number	is	(n-1).		

Time	to	traverse	half	the	tree	after	replacing	the	largest	element	with	‘-	inJinity’,	without	
changing	the	structure	of	the	tree	is	⌈logn⌉.	

𝑇𝑖𝑚𝑒	𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑	𝑡𝑜	𝑓𝑖𝑛𝑑	𝑙𝑎𝑟𝑔𝑒𝑠𝑡	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	 = 	 (𝑛 − 1)	

𝑇𝑖𝑚𝑒	𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑	𝑡𝑜	𝑓𝑖𝑛𝑑	𝑙𝑎𝑟𝑔𝑒𝑠𝑡	𝑎𝑛𝑑	2𝑛𝑑	𝑙𝑎𝑟𝑔𝑒𝑠𝑡	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠	 = 	 (𝑛 − 1) + 	2⌈𝑙𝑜𝑔𝑛⌉	

𝑇𝑖𝑚𝑒	𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑	𝑡𝑜	𝑓𝑖𝑛𝑑	𝑙𝑎𝑟𝑔𝑒𝑠𝑡, 2𝑛𝑑	𝑎𝑛𝑑	3𝑟𝑑	𝑙𝑎𝑟𝑔𝑒𝑠𝑡	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠	 = 	 (𝑛 − 1) + 	4⌈𝑙𝑜𝑔𝑛⌉	

𝑎𝑛𝑑	𝑠𝑜	𝑜𝑛	

	

	

Finding Largest and Second largest elements using Heap Structure

Finding Largest and Second largest elements using Array Structure

	

	

Fibonacci	Sequence	

0,	1,	1,	2,	3,	5,	8,	13,	21,….	
	

𝒇𝒊𝒃(𝒏) = 	𝒇𝒊𝒃	(𝒏 − 𝟏) + 	𝒇𝒊𝒃	(𝒏 − 𝟐)					𝒊𝒇	𝒏 ≥ 𝟐	
													= 	𝒏																																																			𝒊𝒇	𝒏 < 𝟐	

	
	Code:	
eval_fib(n)	{	
if	n<2	return	n	
eval_fib(n)	=	eval_fib(n-1)	+	eval_fib(n-2)	
return	fib(n)	
}	
	

	

	

	

	

	

	

	

	

	

	

As	visible	from	the	chart	above,	multiple	computations	are	done	multiple	times,	resulting	in	
exponential	complexity.	Ideally	we	should	not	compute	the	same	sub-problem	again	and	again.	

Time	Complexity	

𝑇(𝑛) = 	𝑇(𝑛 − 1) + 	𝑇(𝑛 − 2) + 	1	

=
1
√5

¡	¢
√5 + 	1
2

£
!

−		¢
√5 − 	1
2

£
!

¤	

= 	𝑂(2!),			𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙	

Solution:	Memoization		

The	technique	of	caching	the	calculated	values	in	a	table	to	optimise	computation	of	
algorithms	like	the	above,	where	computations	are	redone	multiple	times,	is	called	
memoization.	

	

	

	

	

	

	

	

	

A	memoization	table	is	used	to	store	the	results	of	previously	computed	subproblems	in	
dynamic	programming.	This	table	enables	efJicient	retrieval	of	these	results	when	the	
same	subproblem	recurs,	avoiding	redundant	calculations.	Done	is	marked	as	1	if	the	
value	for	that	speciJic	sub-problem	has	been	computed	once.	

This	optimization	reduces	the	time	complexity	of	problems	with	overlapping	
subproblems,	such	as	the	Fibonacci	sequence,	from	exponential	O(2^n)	to	linear	O(n),	
while	trading	off	additional	memory	space	for	storing	results.	

Iterative	solutions	for	Fibonacci	series:	

1. 𝑓(𝑛) = 	𝑓 v𝑛	 − $
%
w + 	𝑓(𝑛	 + 	1),											𝑛	 ≥ 	2		

	= 	1,																																													𝑛	 < 	2	

2. 𝑓(𝑛) = 	𝑓(𝑛 + 1) + 	𝑓 v$&'
%
w ,											𝑖𝑓	𝑛	𝑖𝑠	𝑜𝑑𝑑	

= 𝑓(𝑛 − 1) + 	𝑓 v
𝑛
2w ,																				𝑖𝑓	𝑛	𝑖𝑠	𝑒𝑣𝑒𝑛	

	

Generic	expression	–		

𝑓(𝑛) = 	𝑓{𝑔(𝑛)| + 	𝑓{ℎ(𝑛)|, 𝑖𝑓	𝑐(𝑛)	𝑖𝑠	𝑡𝑟𝑢𝑒	

= 	𝑏(𝑛),																									𝑖𝑓	𝑐(𝑛)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒	

	

In	case	there	is	an	existence	of	cycle	in	which	case	the	computation	needs	to	be	
terminated,	the	DONE	contains	three	values:	

𝐷𝑂𝑁𝐸 = 0, 𝑖𝑓	𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑖𝑠	𝑝𝑒𝑛𝑑𝑖𝑛𝑔	

𝐷𝑂𝑁𝐸 = 1	𝑖𝑓	𝑐𝑦𝑐𝑙𝑒	𝑖𝑠	𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑒𝑑	

𝐷𝑂𝑁𝐸 = 2, 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑	

Values not being computed again and again;
values already computed are stored in the
MemoizaHon table

