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Algorithm Design Steps:

Initial Solution
e Recursive Formulation
e (Correctness
e Analysis
Exploration of Possibilities
e Decomposition
e Recursive Structure
e Recomposition
Solution Refinement
e Balance/Split
e Identical Sub-Problems
Find Solution
e Traversal of recursive structure
e Prune
Data Structuring
¢ Reuse Computation
e Space Complexity



Example 1: Finding the largest and smallest number
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The input list is divided recursively into smaller sublists until each sublist contains only one
element. Once the sublists are reduced to single elements, comparisons are made as the results
are merged back up the recursion tree

Time Complexity

The recurrence relation for the number of comparisons is: T(n)=T(n—1)+2
Expanding this recurrence:

T(n)=T(n—2)+2+2
T(n)=T(n—3)+2+2+2

T(n)=T(1.)+2(n—1)
Since T(1)=0, we get:
T(n)=2(n-1)

For n=7, the total number of comparisons is:
T(7)=2(7-1)=12



Alternate Solution

Adding a separate condition for |L|=2 to reducing the number of comparisons when number of
elements is 2 from 2 to 1 and modifying the divide-and-conquer method to further reduce the
number of comparisons.

<m,M> <- minMax2(L)
{
If (JL|=1)
return (x1,x1)
If (|L|=2) {if x1>x2
return (x1,x2)
Else

}

Split L into two non-empty sets L1,L2
<m1,M1>-minMax(L1)
<m2,M2>-minMax(L2)
If (m1>m2)

{

m<-m2

If (M1>M2)

M<-M1

Return (x2,x1)

Else

}

m<-ml
If (M1>M2)
M<-M1

M<-M2

Else

Else
M<-M2
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Modifying the splitting criteria in method 1 to reduce the number of comparisons.
Splitting Method 2

Splitting L into two lists containing even number of elements
A0
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Split Method 1: Arbitrarily into two sublists.
Split Method 2: Into two sublists with even number of elements wherever possible.

Splitting evenly reduces comparisons because it balances the recursive calls. This
approach optimizes the divide-and-conquer strategy for finding the minimum and
maximum in a list.

As a thumb rule, while splitting even number of elements, always split into two groups
of even number of elements. While splitting odd number of elements, always split into
one group of even number of elements and one of odd.

Average Time Complexity

To find the average time complexity or average number of comparisons for the splits (1
and n-1), (2 and n-2), and so on,

Recurrence Relation for T(n):
The recurrence relation is given as:
Tm)=TA)+Tn—-1)+2
Tm)=TR)+T(n—-2)+2

Tm)=TB)+T(n—-3)+2

Tm)=Tn-1)+TA)+2



Summing All Terms:
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Writing above relation for n,n —1,n — 2,and so on:
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Final Result:

T(n)=2(n—-1)



Example 2: Finding the largest and second largest number

Possible Solution
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Grand Slam Tournament Structure

To find the second largest number, we can take a bottom up approach, (the grand-slam
tournament structure). The unique characteristic about the structure is that en-route to
becoming the champion, the second largest number would have must been beaten by the largest
number.

So to find the 2nd largest number:
e Maintain the hierarchical tree structure as it is.
e Replace the largest number with “-infinity’ in the maintained tree structure.
e Check for the second largest number ONLY on the nodes where the largest number had

competed.
Data Structuring
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Finding Largest and Second largest elements using Heap Structure

—tt— | | | | |

7 6 7 3 6 7 5 3 1 4 6 2 7

- |

-inf 6 -inf [ 3 6 -inf [ 5 3 1 4 6 2 -inf

6 6 5 3 6 2 5 3 1 4 6 2 -inf

Finding Largest and Second largest elements using Array Structure

If ii is the index of the largest element, then:

i
Comparei' = lEJ -1,

i’
Theni” = |5| -1,
ent [2|

and so on,until reaching level 0.
Time Complexity
Number of comparisons required to find the largest number is (n-1).

Time to traverse half the tree after replacing the largest element with ‘- infinity’, without
changing the structure of the tree is [logn].

Time required to find largest element = (n — 1)
Time required to find largest and 2nd largest elements = (n—1) + 2[logn]
Time required to find largest,2nd and 3rd largest elements = (n— 1) + 4[logn]|

and so on



Fibonacci Sequence

0,1,1,2,3,5,8,13, 21,....

fib(n)= fib(n—1)+ fib(n—2) ifn=>2
=n ifn<2

Code:

eval_fib(n) {

if n<2 return n

eval_fib(n) = eval_fib(n-1) + eval_fib(n-2)
return fib(n)

}

As visible from the chart above, multiple computations are done multiple times, resulting in
exponential complexity. Ideally we should not compute the same sub-problem again and again.

Time Complexity

TmM)=Tnh-1D)+Tn-2)+1

e
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Solution: Memoization

The technique of caching the calculated values in a table to optimise computation of
algorithms like the above, where computations are redone multiple times, is called
memoization.
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Values not being computed again and again;

e c values already computed are stored in the
Memoization table

A emolzauon wdaoie s used w swre the results of previously computed subproblems in
dynamic programming. This table enables efficient retrieval of these results when the
same subproblem recurs, avoiding redundant calculations. Done is marked as 1 if the
value for that specific sub-problem has been computed once.

This optimization reduces the time complexity of problems with overlapping
subproblems, such as the Fibonacci sequence, from exponential O(2”n ) to linear O(n),
while trading off additional memory space for storing results.

[terative solutions for Fibonacci series:
1. f(n)=f(n—§)+f(n+1), n =2
=1, n<?2
n—-1 . .
2. fm)= f(n+ 1)+ f(T)’ if nis odd
n
=f(n—1)+f(i), if nis even

Generic expression -

f(n) = f(g(n)) + f(h(n)), if c(n)istrue
= b(n), if c(n)is false

In case there is an existence of cycle in which case the computation needs to be
terminated, the DONE contains three values:

DONE = 0, if computation is pending
DONE = 1if cycle is encountered

DONE = 2, computation completed




