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Foundation of Algorithm Design 

Algorithm design is the art and science of developing a logical and efficient step-by-step procedure to solve 

computational problems. It plays a foundational role in computer science and software development, providing 

the blueprint for writing code and solving real-world challenges effectively. Algorithm design goes beyond simply 

solving a problem—it addresses the "why" and "how" of creating a solution that is correct, efficient, and 

practical. 

Now we learn how to approach and write efficient algorithms. What is the core foundation of everything? 

To address this, we develop a single method that should guide us in our future endeavors to come up with efficient 

algorithms. 

Pavement of solution: 

1. Initial Solution 

(a) Recursive formulation 

(b) Correctness of solution 

(c) Analysis 

2. Explore Possibilities 

(a) Explore recurrent structure 

(b) Decomposition 

(c) Re-composition Properties 

3. Solution refinement 

(a) Balancing the Split 

(b) Identical Sub-problems 

4. Final solution 

(a) Traversal of recurring structures  

(b) Pruning 

5. Data Structuring 

(a) Re-use computation 

(b) Space complexity 

6. Implementation 

 

 

Only one solution, in most cases, is not perfect. There’s always room for improvement. After finding an initial 

solution, our job is to look for other options, examine them carefully, and create the best possible algorithm. To 

understand this approach better, let’s look at the following example problem. 



 

 

 

To find out the largest of n numbers: 

To solve the problem of finding the top k-elements, let's first address the simpler task of finding the maximum or 

minimum element. Several methods can be used for this: 

1. Method 1 (M1): Sort the array and pick the desired element. 

2. Method 2 (M2): Initialize two variables and iterate through the array, comparing each of the (n−1) 

elements. 

 Once we apply both the methods, we find that M2 is faster than M1. This is because, in M1, we are comparing 

every number with the rest of the numbers in the array. In essence, we are comparing (𝑛
2
) whereas M2 requires 

only 2n-2 comparisons. 

The number of comparisons is used to measure the complexity of an algorithm because, for large n, 

comparisons make up the majority of the operations. This is called the time efficiency of the algorithm. 

Can we make the solution better than this? 

M3: Keep comparing two at a time parallelly. Declare winners in the stage and then follow the same method 

among the winners. Recursively apply this method. We try and count the number of comparisons required for 

an array of size n to find the maximum, supposing p =[ log2 𝑛 ],is, 

No of comparisons = 

𝑛

2
+

𝑛

4
+

𝑛

8
+ ⋯ +

𝑛

2𝑝
=

𝑛

2𝑝
(2𝑝 − 1) = 𝑛 −

𝑛

2𝑝
≈ 𝑛 − 1 for large 𝑛. 

 

Pseudo code: 

                                          Max(L)   

                                 L = {𝑥1 , 𝑥2, 𝑥3, … … … … … , 𝑥𝑛}   

                                if (|L| = 1) return 𝑥1            (cardinality of L = 1) 

                                 L’ =  L – {𝑥1} 

                                 m’  max(L’) 

                                 if (𝑥1 > 𝑚′) 

                                       𝑟𝑒𝑡𝑢𝑟𝑛 𝑥1  

                                 else 

                                       𝑟𝑒𝑡𝑢𝑟𝑛 𝑚′                               

 

 

Recomposition 

Sub-Problem 

Solution 

Decomposition 

T(n) number of 

comparisons 



 

 

 

Example 1:                     5 3 1 4 2 7 6 

                                               

                                     5                  3 1 4 2 7 6 

                                                                

                                                 3                     1 4 2 7 6 

                                                                      

                                                                 1                      4 2 7 6 

 

                                                                                     4                  2 7 6  

 

                                                                                                     2              7 6  

                       

                                                                                                                   7            6 

From the above tree diagram, it is clear that for an array having 7 numbers requires total 6 comparisons.  

             

                                            T(n) = T (n-1) + 1                      where T(n) = Number of comparisons required 

                                                    = T (n-2) +1 + 1 = T(n-2) +2  

                                                    = T(n-3) + 3 

                                                    = T(n-4) + 4 

                                                ……………………. 

                                                …………………….. 

                                               T(n) = T(1) + (n-1) 

                                                        0 

                                              T(n) = n-1     
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T(n) = n-1 



 

 

 

This decomposition is not general enough. Now, we will try and see if it is the only way to find largest. 

Some observations that can be made are, 

1. We can remove any element, not just the first. 

2. We can bisect the array and compare. 

Essentially, we can just divide the array into two non-empty sets L1 and L2. 

 

Method 2:                         m  max2(L) 

                           {    if (|L| = 1) return 𝑥1 

                       Split L into two non- empty set 𝐿1 and 𝐿2 

                         𝑚1 max2 (𝐿1) 

                         𝑚2 max2(𝐿2) 

                         if (𝑚1>𝑚2) return 𝑚1 } 

Example 2:                                           5 3 1 4 2 7 6 

 

                                          5 3 1                                   4 2 7 6 

 

                                5                 3 1                        4                 2 7 6 

                 

                                                 3             1                                 2               7 6 

 

                                                                                                             7                 6 

                   In this case also 6 comparisons are required. 

                                                                                

                      T(n) =       T(k) + T(n − k)+1    n > k 

0 n = 1 

 

Now think of this in terms of a tournament, To declare a sinner among n teams, there needs to be (n-1) 

comparisons.  



Can we do this in less than (n-1) matches? No! Because, in order to eliminate a person, you need a match. So, we 

have an algorithm to find the maximum (n-1) comparisons and we know that it can’t be done in lesser number of 

comparisons. So, this is optimal. 

 

               # Now consider the problem: Return the max and min of L 

                     <m, M>  min Max(L) 

                     If (|L| =1) return (𝑥1, 𝑥1) 

                      Split L into 𝐿1 and 𝐿2 

                        (𝑚1, 𝑀1)   min Max (𝐿1) 

                         (𝑚2, 𝑀2)  min Max (𝐿2) 

                       If (m1 > m2) { 

                           m m2 

                        if ( M1 > M2) 

                                  M  M1 

                                  M  M2 

                       else {  m m1 

                        If (M1>M2)    M M1 

                        else M  M2 

 

   

        T (n ) =  T(k) + T(n-k) +2 

 

              and T(1) = 0 

 

            T(n) = T(n-1) + 2 

           ………………………. 

            ……………………… 

             T(n) = T(1) + 2(n-2) 

          

 

Here we have Proof of Correctness by the Principle 

of Mathematical Induction.  
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                   5 3 1                                    4 2 6 7  

 

         5                       3   1                4             2  6 7 

 

                             3           1                        2         6 7 

 

                                                                              6     7  

 

 



 

 

 

                 Here we have changes the base condition to see the result changes? 

                  <m, M>  min Max(L) 

                     If  (|L| =2)   , if (x1 > x2) return (x1, x2) 

                                    else return (x2 > x1) 

                      Split L into 𝐿1 and 𝐿2 

                        (𝑚1, 𝑀1)   min Max (𝐿1) 

                         (𝑚2, 𝑀2)  min Max (𝐿2) 

                       If (m1 > m2) { 

                           m m2 

                        if ( M1 > M2) 

                                  M  M1 

                                  M  M2 

                       else {  m m1 

                        If (M1>M2)    M M1 

                        else M  M2 

                                                                 5 3 1 4 2 6 7 

 

                                          5 1 3                                              4 2 6 7 

 

                             5                           1  3                      4   2                       6  7 

 

                                             T (n − k) + T(k) + 2             n > 2 

                          T (n)     =             1                                  n= 2 

        0                                  n = 1 

 

 

As can be seen from above, two different ways of splitting the array may produce two different complexities. We 

observe that when the array size is even, going for a split into two even sized arrays gives us the result  in lowest 



possible cost. If the array is of odd size, then we must split it into arrays one of size odd and the other of size even 

anyway. 

 

 

 

If we choose k=1, we get T(n) = 2n−3. Choosing k=2 yields us T(n) = (3𝑛/2) − 1 which is evidently                      

better. 

So, we see that, in order to get to a better algorithm, we had to open up the tree and design it in such a way that 

its depth is less. A balance tree will provide the better solution i.e. lesser comparisons will be required the minMax 

values. Balanced tournament split which minimizes the height of the tournament allows a more efficient algorithm 

which can be extended to sorting. 

 

 

 

Recursive definitions: 

max: Any split is fine. Choose 1, n − 1. The number of comparisons is (n – 1). 

maxmin: At each level, split the array into two arrays of size 2, n−2. The number of comparisons is (3n/2) -2. 

 

 

 

 

               


