CS21003: Algorithms-I (Theory)
 Tutorial - 9 (Disjoint-Set Data Structures and String Matching)

Date: 06-April-2020

1. An sieve-making factory makes sieves in an $N \times N$ 2-dimensional (2D) form, where each grid-cell is either Blocked (opaque) or kept Free (transparent). Any liquid can fill and/or pass through every free cell only. You may represent the cells of such a grid by n^{2} number of 0 's and 1 's - 0 indicating blocked cell and 1 indicating free cell. If a liquid is poured into all the cells of the top layer/row of this 2 D grid, your task is to find out whether the liquid can seep through the sieve from any of the free cell in the bottom layer/row.
So, write an algorithm to find out whether any liquid can seep through a given $N \times N$ grid with free and blocked cells marked. What is the time-complexity of your proposed algorithm?
2. Another heuristic that is similar to union-by-rank is the union-by-weight-balancing rule. In this heuristic, the action of the operation $\operatorname{UNION}(\mathrm{x}, \mathrm{y})$ is to let the root of the tree with fewer nodes point to the root of the tree with a larger number of nodes. If both trees have the same number of nodes, then let y be the parent of x. Answer the following questions:
(i) Compare this union-by-weight-balancing heuristic with the union-by-rank heuristic.
(ii) Prove that the weight-balancing heuristic described in this problem guarantees that the resulting tree is of height $O\left(\log _{2} n\right)$.
(iii) Analyse the time complexity of MAKE-SET, UNION and FIND-SET operations when union-by-weight-balancing heuristics is applied with path-compression techniques.
(iv) Let $\{1\},\{2\},\{3\}, \ldots,\{8\}$ be 8 singleton sets, each represented by a tree with exactly one node. Use the union-find algorithms with union-by-weight-balancing and path-compression techniques to find the tree representation of the set resulting from each of the following unions and finds: $\operatorname{UNION}(1,2), \operatorname{UNION}(3,4), \operatorname{UNION}(5,6), \operatorname{UNION}(7,8), \operatorname{UNION}(1,3)$, UNION(5, 7), FIND-SET(1), UNION(1, 5), FIND-SET(1).
3. Given a text-string, \mathcal{T}, of length N and a pattern string, \mathcal{P}, of length M, your task is to find out all the occurrences of \mathcal{P} in \mathcal{T} including cyclic occurrences.
For example, let $\mathcal{T}=$ "aabaabbcaab" (of length 11) and $\mathcal{P}=$ "abaab" (of length 5), there are two matches, one starting from the second character of \mathcal{T} (normal match) and the other starting from the tenth character of \mathcal{T} (cyclic match).
Modify the Knuth-Morris-Pratt string matching algorithm to match strings having cyclic occurrences. What is the time and space complexity?
4. Let S and T be strings (over the same alphabet) of lengths n and m, respectively. Assume that $m \leq n$. For $r \geq 0$, let T^{r} denote the r-fold concatenation of T with itself. For example, T^{0} is the empty string and $T^{1}=T$ for any $T,(a b a)^{4}=a b a a b a a b a a b a$, and $(a a)^{3}=a a a a a a$.
Your task is to find the largest $r \geq 0$ such that T^{r} is a substring of S. Propose an efficient algorithm to solve this problem. What is the worst-case time-complexity?
