CS21003: Algorithms-I (Theory)
 Tutorial - 7 (Graph Traversals)
 Date: 26-March-2020

1. Consider a Directed Acyclic Graph (DAG), $G=(V, E)$, where V and E are the set of vertices and edges respectively. Propose suitable algorithms to do the following:
(i) Extend the topological ordering algorithm to find all possible topological orderings of G. What is the time-complexity?
(ii) Modify the topological ordering algorithm to find the levels of all the vertices in G. What is the time-complexity?
2. Suppose that the DFS algorithm is applied to a directed graph, $G=(V, E)$, where V and E are the set of vertices and edges respectively. Give an iterative DFS algorithm that classifies the edges of G as either tree edges, back edges, forward edges or cross edges and return the count for each of these.
[Hint: Use a stack explicitly for writing the iterative DFS.]
3. Given a Directed Acyclic Graph (DAG), $G=(V, E)$, where V and E are the set of vertices and edges respectively and a source vertex $s \in V$ in it, give an algorithm to find the longest distances from s to all other vertices in G. Further, modify the algorithm so that it works for weighted DAG. What are your time-complexity for both the cases?
4. Given two unmarked jugs having capacities C_{1} and C_{2} liters respectively and a target volume T liters, give an algorithm to find the moves that get exactly T liters in any of the two jugs. Assume that, T is a multiple of $\operatorname{GCD}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$. [Hint: Use/Modify any of BFS or DFS to solve it.]
5. A Bipartite Graph is a graph whose vertices can be divided into two independent sets, \mathcal{U} and \mathcal{V} such that every edge (u, v) connects a vertex from \mathcal{U} to another vertex \mathcal{V} or vice-versa. In other words, for every edge (u, v), either $u \in \mathcal{U}$ and $v \in \mathcal{V}$, or $u \in \mathcal{V}$ and $v \in \mathcal{U}$. We can also say that there is no edge that connects vertices of same set. Now, given a graph, $G=(V, E)$, where V and E are the set of vertices and edges respectively, propose an algorithm to find that G is a bipartite graph or not.
[Hint: Use/Modify any of BFS or DFS to solve it.]
