
CS21003: Algorithms-I (Theory)

Tutorial – 4 (Dynamic Programming)

Date: 13-February-2020

1. (Edit-Distance problem) Given two strings S1 of n1 characters and S2 of n2 characters, the

problem is to modify S1 and convert it into S2 through a sequence of character edits. The

character edits can be insertion, deletion and overwrite. Each character edit takes unit amount

of time. Assume that, all the characters belong to the same alphabet set. Your task is to devise

an algorithm that minimizes the number of edits (and hence the time) required.

(i) Propose a recursive definition for finding the number of edits required.

(ii) Convert the above definition into a recursive algorithm to solve the above problem. What

will be the time complexity? Are there overlapping subproblems?

(iii) Can you use memoization to reduce the time-complexity? Present the memoized algo-

rithm to solve the same. What will be your space-complexity (additional space required

to memoize)?

(iv) Design an efficient iterative algorithm that minimizes the number of edits required. What

is the time and space complexity of your iterative solution?

2. (Longest Ascending Subsequence problem) Given an array A[1..n] of natural numbers, the prob-

lem is to determine the longest ascending subsequence of A[]. A subsequence of an array A[]
is defined as a list A[i1], A[i2], . . . , A[im] for some 1 ≤ i1 < i2 < · · · < i

m
≤ n. The

value m is called the length of the subsequence. Such a subsequence is called ascending if

A[i1] ≤ A[i2] ≤ · · · ≤ A[i
m
]. Your task is to devise an algorithm that finds the length along

with the longest ascending subsequence from the given array.

(i) Propose a recursive definition for finding the length of the longest ascending subsequence.

(ii) Convert the above definition into a recursive algorithm to solve the above problem. What

will be the time complexity? Are there overlapping subproblems?

(iii) Can you use memoization to reduce the time-complexity? Present the memoized algo-

rithm to solve the same. What will be your space-complexity (additional space required

to memoize)?

(iv) Design an efficient iterative algorithm that finds the length as well as the longest ascending

subsequence. What is the time and space complexity of your iterative solution?

1

