CS21003: Algorithms-I (Theory)
 Tutorial - 2 (Divide-and-Conquer Algorithms)

Date: 30-January-2020

1. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an array of n integers. A majority element in this array is an element $x_{i} \in X$ which occurs (repeats) at least $\left\lceil\frac{n}{2}\right\rceil$ number of times. If the existence of such an element is not found, then we simply say that the array has no majority element. We can easily find the majority element of a given n-element integer array using the following two methods:
(i) Use sorting techniques to find the majority element in $O(n \log n)$ time.
(ii) Use median finding approach to find the majority element in $O(n)$ time.

For the two above-mentioned approaches, formulate the initial recursive definitions and convert these into algorithmic pseudo-codes. Then, verify your solution and derive the given time-complexities as well.
Now, if you are also provided with the fact that the majority element definitely exists for a given array, can you think of any other efficient $O(n)$-time algorithm, without using sorting or median-finding procedures? Write the initial recursive definition and derive the time-complexity of the proposed algorithm.
2. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an array of n integers and x is an integer. Propose an efficient algorithm to determine whether there are two elements in X whose sum is exactly x. Derive the time-complexity of the proposed algorithm.
3. You are given an array $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of n distinct integers. It is given that the elements of \mathcal{A} satisfy the following inequalities: $a_{1}<a_{2}<\cdots<a_{m-1}<a_{m}>a_{m+1}>a_{m+2}>\cdots>a_{n}$, for some (unknown) index m in the range $1<m<n$. Let us call such an array a hill-valued array. The sequence $a_{1}, a_{2}, \ldots, a_{m}$ is called the ascending part of the hill, and the remaining part $a_{m}, a_{m+1}, \ldots a_{n}$ is called the descending part of the hill. The element a_{m} is the peak of the hill and is the largest element in the array. Your task is to locate the peak (that is, a_{m}) in the hill-valued array \mathcal{A} using a suitable algorithm. What is the time-complexity of your designed algorithm?
4. Recall the algorithm for Median Finding from an n-element array. You may have noticed that, in the initial phase of the algorithm, we split n element array into $\left\lfloor\frac{n}{5}\right\rfloor$ subparts each having 5 -elements. Instead, let us do something different in this splitting at the beginning, and check the impact on the time-complexity of the same algorithm.
First, your task is to analyze the time-complexity of this algorithm, when we split the elements as follows:
(i) $\left\lfloor\frac{n}{3}\right\rfloor$ subparts each having 3-elements;
(Odd-split of <5 elements)
(ii) $\left\lfloor\frac{n}{7}\right\rfloor$ subparts each having 7-elements;
(Odd-split of >5 elements)
(iii) $\left\lfloor\frac{n}{4}\right\rfloor$ subparts each having 4-elements; and
(Even-split of <5 elements)
(iv) $\left\lfloor\frac{n}{6}\right\rfloor$ subparts each having 6 -elements.
(Even-split of >5 elements)
In general, deduce the generic time-complexity recurrence relations and present the solution for the following cases:

- $\left\lfloor\frac{n}{2 k-1}\right\rfloor$ subparts each having (odd number of) $(2 k-1)$-elements, for $k=\{1,2,3, \ldots\}$; and
- $\left\lfloor\frac{n}{2 k}\right\rfloor$ subparts each having (even number of) $2 k$-elements, for $k=\{1,2,3, \ldots\}$.

Doing this analysis, you may get a feel of the optimal position of splitting in the median-finding algorithm! So, what is your general observation? Formally explain (briefly).

