
CS21003: Algorithms-I (Theory)

Tutorial – 1 (Algorithmic Time Complexity and Recurrences)

Date: 16-January-2020

1. Compare the following functions based on asymptotic notations:

(a) f(n) =
√
n and g(n) = (log n)2

(b) f(n) = log(logn) and g(n) =
√
n

(c) f(n) = n1.5 and g(n) = n logn

2. Prove the following statements for the non-negative functions, f(n), g(n), h(n), g1(n) and g2(n):

(a) If f(n) = O(g(n)) and g(n) = O(h(n)), then prove that f(n) = O(h(n)).

(b) If f(n) = O(g1(n)) and f(n) = O(g2(n)), then prove that, f(n) = O
(

MIN(g1(n), g2(n))
)

.

(c) If f(n) = Ω(g1(n)) and f(n) = Ω(g2(n)), then prove that, f(n) = Ω
(

MAX(g1(n), g2(n))
)

.

3. Argue whether 2n = O(2n−1)?

If the above is YES, then determine the fallacy in the following derivation:

2n = O(2n−1) and 2n−1 = O(2n−2) implies 2n = O(2n−2). (Using Problem-2(a) Statement)

Now, 2n = O(2n−2) and 2n−2 = O(2n−3) implies 2n = O(2n−3), and so on . . .
Continuing in this way, we get 2n = O(2n−1) = O(2n−2) = . . . = O(21) = O(20) = O(1) = constant.

4. Find two functions f(n) and g(n) such that, neither f(n) = O(g(n)), nor g(n) = O(f(n)).

5. What is the time complexity of the following algorithms/programs? Explain.

(a) void fun (int n) {

int j = 1, i = 0;

while (i < n) {

// Some constant-time tasks

i = i + j;

j++;

}

}

(b) long int exponentiation (int x , unsigned int n) {

if (n == 0) return 1;

if (n == 1) return x;

if (n is EVEN) return (exponentiation(x*x,n/2));

else return (exponentiation(x*x,n/2) * x);

}

What happens when the last line be: else return (exponentiation(x,n-1) * x);

6. Let the running time of a recursive algorithm satisfy the recurrence: T (n) = aT (
√
n) + h(n). Deduce the running

time T (n) in asymptotic Θ notation for the cases:

(i) h(n) = nd for some d ∈ {1, 2, 3, . . .}, and

(ii) h(n) = logd n for some d ∈ {0, 1, 2, . . .}.

7. Solve the following recurrence relations:

(a) nT (n) = (n+ 1)T (n− 1) + 2n for n ≥ 1, with the initial condition T (0) = 0.

(b) T (n) = nT (n− 1) + n(n− 1)T (n− 2) + n! for n ≥ 2, with T (0) = 0, T (1) = 1.

8. Derive asymptotic time complexities from the following recurrences relation using Master Theorem:

(a) T (n) = 4T (n/2) + n.

(b) T (n) = 4T (n/2) + n2.

(c) T (n) = 7T (n/2) + n2.

(d) T (n) = 7T (n/2) + n3

1

