CS21003: Algorithms-I (Theory) Tutorial - 1 (Algorithmic Time Complexity and Recurrences)

Date: 16-January-2020

1. Compare the following functions based on asymptotic notations:
(a) $f(n)=\sqrt{n}$ and $g(n)=(\log n)^{2}$
(b) $f(n)=\log (\log n)$ and $g(n)=\sqrt{n}$
(c) $f(n)=n^{1.5}$ and $g(n)=n \log n$
2. Prove the following statements for the non-negative functions, $f(n), g(n), h(n), g_{1}(n)$ and $g_{2}(n)$:
(a) If $f(n)=O(g(n))$ and $g(n)=O(h(n))$, then prove that $f(n)=O(h(n))$.
(b) If $f(n)=O\left(g_{1}(n)\right)$ and $f(n)=O\left(g_{2}(n)\right)$, then prove that, $f(n)=O\left(\operatorname{MIN}\left(g_{1}(n), g_{2}(n)\right)\right)$.
(c) If $f(n)=\Omega\left(g_{1}(n)\right)$ and $f(n)=\Omega\left(g_{2}(n)\right)$, then prove that, $f(n)=\Omega\left(\operatorname{MAX}\left(g_{1}(n), g_{2}(n)\right)\right)$.
3. Argue whether $2^{n}=O\left(2^{n-1}\right)$?

If the above is YES, then determine the fallacy in the following derivation:
$2^{n}=O\left(2^{n-1}\right)$ and $2^{n-1}=O\left(2^{n-2}\right)$ implies $2^{n}=O\left(2^{n-2}\right)$. (Using Problem-2(a) Statement)
Now, $2^{n}=O\left(2^{n-2}\right)$ and $2^{n-2}=O\left(2^{n-3}\right)$ implies $2^{n}=O\left(2^{n-3}\right)$, and so on \ldots
Continuing in this way, we get $2^{n}=O\left(2^{n-1}\right)=O\left(2^{n-2}\right)=\ldots=O\left(2^{1}\right)=O\left(2^{0}\right)=O(1)=$ constant .
4. Find two functions $f(n)$ and $g(n)$ such that, neither $f(n)=O(g(n))$, nor $g(n)=O(f(n))$.
5. What is the time complexity of the following algorithms/programs? Explain.
(a) void fun (int n) \{
int $j=1, i=0$;
while (i < n) \{
// Some constant-time tasks
i $=i+j$;
j++;
\}
\}
(b) long int exponentiation (int x , unsigned int n) \{
if ($\mathrm{n}==0$) return 1;
if ($\mathrm{n}==1$) return x ;
if (n is EVEN) return (exponentiation($x * x, n / 2$));
else return (exponentiation(x*x,n/2) * x);
\}

What happens when the last line be: else return (exponentiation ($\mathrm{x}, \mathrm{n}-1$) * x);
6. Let the running time of a recursive algorithm satisfy the recurrence: $T(n)=a T(\sqrt{n})+h(n)$. Deduce the running time $T(n)$ in asymptotic Θ notation for the cases:
(i) $h(n)=n^{d}$ for some $d \in\{1,2,3, \ldots\}$, and
(ii) $h(n)=\log ^{d} n$ for some $d \in\{0,1,2, \ldots\}$.
7. Solve the following recurrence relations:
(a) $n T(n)=(n+1) T(n-1)+2 n$ for $n \geq 1$, with the initial condition $T(0)=0$.
(b) $T(n)=n T(n-1)+n(n-1) T(n-2)+n$! for $n \geq 2$, with $T(0)=0, T(1)=1$.
8. Derive asymptotic time complexities from the following recurrences relation using Master Theorem:
(a) $T(n)=4 T(n / 2)+n$.
(b) $T(n)=4 T(n / 2)+n^{2}$.
(c) $T(n)=7 T(n / 2)+n^{2}$.
(d) $T(n)=7 T(n / 2)+n^{3}$

