CS21003: Algorithms-I (Theory)
Tutorial — 1 (Algorithmic Time Complexity and Recurrences)
Date: 16-January-2020

. Compare the following functions based on asymptotic notations:
@ f(n)=nandg(n) = (logn)*

(b) f(n) = log(logn) and g(n) = v/

(©) f(n) =n'®and g(n) =nlogn

. Prove the following statements for the non-negative functions, f(n), g(n), h(n), g1(n) and g2(n):

(@ If f(n) = O(g(n)) and g(n) = O(h(n)), then prove that f(n) = O(h(n)).

(b) If f(n) = O(g1(n)) and f(n) = O(gz(n)), then prove that, f(n) = O(MIN(g1(n), g2(n))).
(©) If f(n) = Q(g1(n)) and f(n) = Q(g2(n)), then prove that, f(n) = Q(MAX(g1(n), g2(n))).
. Argue whether 2" = O(2"~1)?

If the above is YES, then determine the fallacy in the following derivation:

2" = 02" 1) and 2"~ = O(2"~2) implies 2" = O(2"~2). (Using Problem-2(a) Statement)

Now, 2" = O(2"2) and 2”2 = O(2"3) implies 2" = O(2"~3), and so on . ...

Continuing in this way, we get 2" = O(2" 1) = 0(2"?) = ... = O(2!) = O(2°) = O(1) = constant.

. Find two functions f(n) and g(n) such that, neither f(n) = O(g(n)), nor g(n) = O(f(n)).

. What is the time complexity of the following algorithms/programs? Explain.

(a) void fun ( int n ) {
int § =1, i = 0;
while (1 < n ) {

// Some constant-time tasks
i=1i+ 3j;

Jt+;
}
}
(b) long int exponentiation ( int x , unsigned int n ) {
if (( n == ) return 1;
if ( n == ) return x;
if ( n is EVEN ) return ( exponentiation(xxx,n/2) );
else return ( exponentiation(x*x,n/2) x x );
}
What happens when the last line be: else return ( exponentiation(x,n-1) = x );

. Let the running time of a recursive algorithm satisfy the recurrence: 7'(n) = aT'(y/n ) + h(n). Deduce the running
time 7'(n) in asymptotic © notation for the cases:
() h(n) =n? forsome d € {1,2,3,...}, and
(i) h(n) = log®n forsome d € {0,1,2,...}.
. Solve the following recurrence relations:
(@ nT(n) = (n+1)T(n— 1) + 2n for n > 1, with the initial condition 7'(0) = 0.
(b) T(n)=nT(n—1)+n(n—1)T(n—2)+n!forn>2,withT(0) =0,T(1) = 1.
. Derive asymptotic time complexities from the following recurrences relation using Master Theorem:
(a) T(n) =4T(n/2) + n.
(b) T(n) =4T(n/2) + n?
(c) T(n) =7T(n/2) + n?
(d) T(n) =17T(n/2) +n?




