1.

2.

3.

[CS21003 : Algorithms-1] Online-
Quiz/Test

Date: 08-April-2020 (Wednesday)

Time: 10:00 am - 12:00pm (2-hours)

Total Marks: 20 -- Three Questions [Q1 = 6-marks ++ Q2 = 7-marks ++ Q3 = 7-marks]
Course: CS21003 -- Algorithms-|

Session: Spring - 2020

INSTRUCTIONS: (Please read carefully!)

-- There are THREE questions. You are asked to answer ALL of these.

-- It is advised that you first read the question, solve it fully in a rough-paper before going on
entering the results (all together for that question) in the portal and finally cross-check your
answers with the entered values.

-- Within the permitted 2-hours time of online-test, you can update/modify/correct your
answers and re-submit with your log-in, as many times as you require.

-- You are free to consult any resources you want, but plagiarisms will be severely penalized
(as per institute norms).

-- *comma-separated format* means providing values of an array/list in sequence separated
by only comma(,) and nothing else.

[To enter an example 4-valued array, say ARR[] = {4, 7, 5, -2}, in comma-separated format, it
will be written as ONLY 4, 7, 5,-2 (i.e. 4 values in sequence + 3 commas in between and
NOTHING ELSE)]

NOTE: You NEED to SIGN-IN to your GOOGLE account to participate in this Online Quiz/Test.
* Required

Email address *

Name *

Roll-Number *

4. Department *

5. Disclaimer *

Check all that apply.

| have read the INSTRUCTIONS and understood the same. | hereby indicate my
participation in the Online-Quiz/Test.

Given a weighted undirected graph G =<V, E, W>, where the vertices are V =
{A,B,C,D,E,F} (IV| = 6), the edges are E = {(A,B), (A,D), (AE), (B,C), (B,D), (B,E), (B,F),
(C,E), (C,F), (D,E), (E,F)} (IEI = 11), the weights form the set W (not specified and you
have to enter). PLEASE REFER TO THE IMAGE (Figure-1) GIVEN BELOW.

Your are asked to do the following:

Question-
. [i] Define the weights (as a positive number) for each edge to make the example
1: (wighted undirected graph) complete.
Minimum Remember, every edge-weight should be a distinct number.
Spannlng [ii] Show the step-wise running (as asked below) of Prim's algorithm over the example

Tree graph that you constructed. Assume that, ‘A’ be the starting vertex/node to initiate this

) algorithm. [Marks = 3]
[Marks: 6] More precisely, you shall be notifying the next edge to be added at every step.

[iii] Show the step-wise running (as asked below) of Kruskal's algorithm over the

example graph that you constructed. [Marks = 3]
More precisely, you shall be notifying the next edge to be added at every step.

Figure-1 (for Question-1)

10.

11.

12.

13.

Are you Attempting Question-1? *
Mark only one oval.

YES
NO

Enter Weight of Edge-(A,B)

Enter Weight of Edge-(A,D)

Enter Weight of Edge-(A,E)

Enter Weight of Edge-(B,C)

Enter Weight of Edge-(B,D)

Enter Weight of Edge-(B,E)

Enter Weight of Edge-(B,F)

14.

15.

16.

17.

18.

Enter Weight of Edge-(C,E)

Enter Weight of Edge-(C,F)

Enter Weight of Edge-(D,E)

Enter Weight of Edge-(E,F)

Prim's Algorithm: Added Edge at Step-1

Let, 'A' be the starting vertex/node to initiate the algorithm.

Mark only one oval.

Edge-(A,B)
Edge-(A,D)
Edge-(AE)
Edge-(B,C)
Edge-(B,D)
Edge-(B,E)
Edge-(B,F)
Edge-(C,E)
Edge-(C,F)
Edge-(D,E)
Edge-(E,F)

19. Prim's Algorithm: Added Edge at Step-2

Mark only one oval.

Edge-(A,B)
Edge-(A,D)
Edge-(A,E)
Edge-(B,C)
Edge-(B,D)
Edge-(B,E)
Edge-(B,F)
Edge-(C,E)
Edge-(C,F)
Edge-(D,E)
Edge-(E,F)

20. Prim's Algorithm: Added Edge at Step-3

Mark only one oval.

Edge-(A,B)
Edge-(A,D)
Edge-(A,E)
Edge-(B,C)
Edge-(B,D)
Edge-(B,E)
Edge-(B,F)
Edge-(C,E)
Edge-(C,F)
Edge-(D,E)
Edge-(E,F)

21. Prim's Algorithm: Added Edge at Step-4

Mark only one oval.

Edge-(A,B)
Edge-(A,D)
Edge-(A,E)
Edge-(B,C)
Edge-(B,D)
Edge-(B,E)
Edge-(B,F)
Edge-(C,E)
Edge-(C,F)
Edge-(D,E)
Edge-(E,F)

22. Prim's Algorithm: Added Edge at Step-5

Mark only one oval.

Edge-(A,B)
Edge-(A,D)
Edge-(A,E)
Edge-(B,C)
Edge-(B,D)
Edge-(B,E)
Edge-(B,F)
Edge-(C,E)
Edge-(C,F)
Edge-(D,E)
Edge-(E,F)

Prim's Algorithm: What is the total cost of the Minimum Spanning Tree that you
formed?

Kruskal's Algorithm: Added Edge at Step-1

Mark only one oval.

Edge-(A,B)
Edge-(A,D)
Edge-(A,E)
Edge-(B,C)
Edge-(B,D)
Edge-(B,E)
Edge-(B,F)
Edge-(C,E)
Edge-(C,F)
Edge-(D,E)
Edge-(E,F)

25. Kruskal's Algorithm: Added Edge at Step-2

Mark only one oval.

Edge-(A,B)
Edge-(A,D)
Edge-(A,E)
Edge-(B,C)
Edge-(B,D)
Edge-(B,E)
Edge-(B,F)
Edge-(C,E)
Edge-(C,F)
Edge-(D,E)
Edge-(E,F)

26. Kruskal's Algorithm: Added Edge at Step-3

Mark only one oval.

Edge-(A,B)
Edge-(A,D)
Edge-(A,E)
Edge-(B,C)
Edge-(B,D)
Edge-(B,E)
Edge-(B,F)
Edge-(C,E)
Edge-(C,F)
Edge-(D,E)
Edge-(E,F)

27. Kruskal's Algorithm: Added Edge at Step-4

Mark only one oval.

Edge-(A,B)
Edge-(A,D)
Edge-(A,E)
Edge-(B,C)
Edge-(B,D)
Edge-(B,E)
Edge-(B,F)
Edge-(C,E)
Edge-(C,F)
Edge-(D,E)
Edge-(E,F)

28. Kruskal's Algorithm: Added Edge at Step-5

Mark only one oval.

Edge-(A,B)
Edge-(A,D)
Edge-(A,E)
Edge-(B,C)
Edge-(B,D)
Edge-(B,E)
Edge-(B,F)
Edge-(C,E)
Edge-(C,F)
Edge-(D,E)
Edge-(E,F)

29. Kruskal's Algorithm: What is the total cost of the Minimum Spanning Tree that
you formed?

Question-
2: Single-
source
Shortest
Path
[Marks: 7]

Five cities, {A, B, C, D, E}, are connected via roads, {(A,B), (A,C), (A,D), (B,C), (B,D), (B,E),
(C,D), (D,E)}, in the following manner AS SHOWN IN THE IMAGE (Figure-2) BELOW.

There is a travel-cost to travel from one city to another (any direction) via the road
connections. Let, all the travel-costs are unique and the travel-cost from City-X to City-
Y is the same as the travel-cost from City-Y to City-X. Moreover, there is a tourist-cost
(associated with every city) which one has to pay if (s)he touches any city while
travelling.

Your are asked to do the following:

[i] Define all the travel-costs and tourist-cost (as a positive number) to make the
above example (wighted undirected graph) complete.

Remember that, all the travel-cost between cities are distinct positive values and the
tourist-cost for the cities are also distinct positive values (though, some travel-cost
may match with some tourist-cost).

[ii] You start from the City-A and want to estimate the minimum cost route to visit all
the other destination cities, {B, C, D, E}. Present the modified version Dijkstra's
algorithm to solve this problem. [Marks = 2]

[iil] Show the step-wise running (as asked below) of a modified Dijkstra's algorithm
over the example graph that you constructed. [Marks = 5]
More precisely, you shall be updating the two 5-element 1-D arrays, cost[] and parent]
I; where --
--> cost[Z] indicates the minimum-cost values to reach City-Z from City-A.

Initially, cost[A] = tourist-cost(A), cost[B] = infinity, cost[C] = infinity, cost[D] =
infinity, cost[E] = infinity.
--> parent[Z] indicates the previous city from which City-Z is being reached.

Initially, parent[A] = null, parent[B] = null, parent[C] = null, parent[D] = null, parent[E]
= null.

Figure-2 (for Question-2)

(=)
)
8

30.

31.

32.

33.

34.

35.

36.

37.

Are you Attempting Question-2?7 *
Mark only one oval.

YES
NO

Enter Travel-Cost between (A,B)

Enter Travel-Cost between (A,C)

Enter Travel-Cost between (A,D)

Enter Travel-Cost between (B,C)

Enter Travel-Cost between (B,D)

Enter Travel-Cost between (B,E)

Enter Travel-Cost between (C,D)

38.

39.

40.

41.

42.

43.

44,

Enter Travel-Cost between (D,E)

Enter Tourist-Cost for City-A

Enter Tourist-Cost for City-B

Enter Tourist-Cost for City-C

Enter Tourist-Cost for City-D

Enter Tourist-Cost for City-E

Solution: Modified Version of Dijkstra's Algorithm

Assume the following notation while writing the algorithm: The travel-cost between City-X and City-Y is
C[X,Y], the tourist-cost for City-Z is T[Z], and the minimum-cost to a reach City-W from City-A (start-city)
is given by cost[W].

45.

46.

47.

48.

49.

Step-0 (Initiation): Enter initial 5-values (in comma-separated format) of the
cost[] array (indexed as cost[A, B, C, D, EJ).
For "infinity", write INFY for that entry

Step-0 (Initiation): Enter initial 5-values (in comma-separated format) of the
parent[] array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

Step-1: Starting (First Chosen/Marked) City (Vertex)

Mark only one oval.

City-A
City-B
City-C
City-D
City-E

Step-1: Enter modified 5-values (in comma-separated format) of the cost[]
array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

Step-1: Enter modified 5-values (in comma-separated format) of the parent|]
array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

50. Step-2: Next Chosen/Marked City (Vertex)

Mark only one oval.

City-A
City-B
City-C
City-D
City-E

51. Step-2: Enter modified 5-values (in comma-separated format) of the cost[]
array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

52. Step-2: Enter modified 5-values (in comma-separated format) of the parent|]
array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

53. Step-3: Next Chosen/Marked City (Vertex)

Mark only one oval.

City-A
City-B
City-C
City-D
City-E

54. Step-3: Enter modified 5-values (in comma-separated format) of the cost][]
array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

59.

56.

57.

58.

59.

Step-3: Enter modified 5-values (in comma-separated format) of the parent]]
array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

Step-4: Next Chosen/Marked City (Vertex)

Mark only one oval.

City-A
City-B
City-C
City-D
City-E

Step-4: Enter modified 5-values (in comma-separated format) of the cost|]
array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

Step-4: Enter modified 5-values (in comma-separated format) of the parent|]
array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

Step-5: Final Chosen/Marked City (Vertex)

Mark only one oval.

City-A
City-B
City-C
City-D
City-E

60. Step-5: Enter final 5-values (in comma-separated format) of the cost[] array
(indexed as cost[A, B, C, D, EJ).
For "infinity", write INFY for that entry

61. Step-5: Enter final 5-values (in comma-separated format) of the parent[] array
(indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

62. Costliest-City: Which city requires the MOST cost to be visited from City-A?

Mark only one oval.

City-B
City-C
City-D
City-E

63. Cheapest-City: Which city requires the LEAST cost to be visited from City-A?

Mark only one oval.

City-B
City-C
City-D
City-E

Question-
3: All-
pairs
Shortest
Path
[Marks: 7]

Given a weighted directed graph G =<V, E, W>, where the vertices are V = {A,B,C,D,E,F}
(IVI = 6), the directed edges are E = {(A,B), (A,C), (B,C), (B,D), (C,D), (C,E), (D,E), (D,F),
(E,B), (E,F), (FA)} (IEl = 11), the weights form the set W (specified partially -- only
negative edge-weights are given, that is, W(A,C)=-3, W(C,D)=-4 and W(E,F)=-6 and rest
will be filled by you). PLEASE REFER TO THE IMAGE (Figure-3) GIVEN BELOW.

Your are asked to do the following:

[i] Define only the positive weights (as a positive number) for all remaining edges to
make the example (wighted directed graph) complete.

Remember, each edge-weights should all be distinct positive numbers only (negative
edge-weights are already given).

[ii] Show the step-wise running (as asked below) of Floyd-Warshall's algorithm over
the example graph that you constructed. [Marks = 7]

More precisely, you shall be providing (in row-wise manner for all-6 rows) the 2-D cost
calculation matrix (memoized) values F[][] at every step (you may refer to the lecture-
slides!) and also indicate the number of negative entries in F[][].

Figure-3 (for Question-3)

64. Are you Attempting Question-3? *

Mark only one oval.

YES
NO

65. Enter Weight of Directed Edge-(A,B)

66.

67.

68.

69.

70.

71.

72.

73.

Enter Weight of Directed Edge-(B,C)

Enter Weight of Directed Edge-(B,D)

Enter Weight of Directed Edge-(C,E)

Enter Weight of Directed Edge-(D,E)

Enter Weight of Directed Edge-(D,F)

Enter Weight of Directed Edge-(E,B)

Enter Weight of Directed Edge-(F,A)

Step-O0: Initial 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

74.

75.

76.

77.

78.

79.

Step-0: Initial 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

Step-0: Initial 6-values of Row-3 (in comma-separated format) for Vertex-C in
the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

Step-0: Initial 6-values of Row-4 (in comma-separated format) for Vertex-D in
the 2-D cost-matrix, i.e. F[4][]

For "infinity", write INFY for that entry

Step-O0: Initial 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

Step-O0: Initial 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

80.

81.

82.

83.

84.

85.

Step-1: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C in
the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D in
the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

86.

87.

88.

89.

90.

91.

Step-2: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C
in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D
in the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

92.

93.

94.

95.

96.

97.

Step-3: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C
in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D
in the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry

Step-4: Updated 6-values of Row-1(in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

98. Step-4: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B
in the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

99. Step-4: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C
in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

100. Step-4: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D
in the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry

101. Step-4: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E
in the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

102. Step-4: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F
in the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry

103. Step-5: Updated 6-values of Row-1(in comma-separated format) for Vertex-A
in the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

104.

105.

106.

107.

108.

100.

Step-5: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B
in the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C
in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D
in the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E
in the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F
in the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-1(in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

110.

111.

112.

113.

114.

Step-6: Final 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-3 (in comma-separated format) for Vertex-C in
the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-4 (in comma-separated format) for Vertex-D in
the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

115. Finally, how many entries have negative values in your (memoized) cost-
calculation matrix, F[][] (having 6x6 dimension)?

Mark only one oval.

C o
C 1
C)2
C s
C a4
C s
C e
C)7
C s
C Do
C)10
C On
C)12
C)13
C)14
C)15
C)16
C)17
C)18
C)19
C D20
C D21
C)22
()23
(o4
()25
C)26
C)27
()28
C)29
()30

()31
C)32
()33
()34
()35
()36

This content is neither created nor endorsed by Google.

Google Forms

https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms

