
1. Email address *

2.

3.

[CS21003 : Algorithms-I] Online-
Quiz/Test
Date: 08-April-2020 (Wednesday)
Time: 10:00 am - 12:00pm (2-hours)
Total Marks: 20 -- Three Questions [Q1 = 6-marks ++ Q2 = 7-marks ++ Q3 = 7-marks]
Course: CS21003 -- Algorithms-I
Session: Spring - 2020

INSTRUCTIONS: (Please read carefully!)
 -- There are THREE questions. You are asked to answer ALL of these.
 -- It is advised that you first read the question, solve it fully in a rough-paper before going on
entering the results (all together for that question) in the portal and finally cross-check your
answers with the entered values.
 -- Within the permitted 2-hours time of online-test, you can update/modify/correct your
answers and re-submit with your log-in, as many times as you require.
 -- You are free to consult any resources you want, but plagiarisms will be severely penalized
(as per institute norms).
 -- *comma-separated format* means providing values of an array/list in sequence separated
by only comma(,) and nothing else.
[To enter an example 4-valued array, say ARR[] = {4, 7, 5, -2}, in comma-separated format, it
will be written as ONLY 4, 7, 5, -2 (i.e. 4 values in sequence + 3 commas in between and
NOTHING ELSE)]

NOTE: You NEED to SIGN-IN to your GOOGLE account to participate in this Online Quiz/Test.
* Required

Name *

Roll-Number *

4.

5.

Check all that apply.

I have read the INSTRUCTIONS and understood the same. I hereby indicate my
participation in the Online-Quiz/Test.

Question-
1:
Minimum
Spanning
Tree
[Marks: 6]

Given a weighted undirected graph G =<V, E, W>, where the vertices are V =
{A,B,C,D,E,F} (|V| = 6), the edges are E = {(A,B), (A,D), (A,E), (B,C), (B,D), (B,E), (B,F),
(C,E), (C,F), (D,E), (E,F)} (|E| = 11), the weights form the set W (not specified and you
have to enter). PLEASE REFER TO THE IMAGE (Figure-1) GIVEN BELOW.

Your are asked to do the following:

[i] Define the weights (as a positive number) for each edge to make the example
(wighted undirected graph) complete.
Remember, every edge-weight should be a distinct number.

[ii] Show the step-wise running (as asked below) of Prim's algorithm over the example
graph that you constructed. Assume that, 'A' be the starting vertex/node to initiate this
algorithm. [Marks = 3]
More precisely, you shall be notifying the next edge to be added at every step.

[iii] Show the step-wise running (as asked below) of Kruskal's algorithm over the
example graph that you constructed. [Marks = 3]
More precisely, you shall be notifying the next edge to be added at every step.

Figure-1 (for Question-1)

Department *

Disclaimer *

6.

Mark only one oval.

YES

NO

7.

8.

9.

10.

11.

12.

13.

Are you Attempting Question-1? *

Enter Weight of Edge-(A,B)

Enter Weight of Edge-(A,D)

Enter Weight of Edge-(A,E)

Enter Weight of Edge-(B,C)

Enter Weight of Edge-(B,D)

Enter Weight of Edge-(B,E)

Enter Weight of Edge-(B,F)

14.

15.

16.

17.

18.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

Enter Weight of Edge-(C,E)

Enter Weight of Edge-(C,F)

Enter Weight of Edge-(D,E)

Enter Weight of Edge-(E,F)

Prim's Algorithm: Added Edge at Step-1
Let, 'A' be the starting vertex/node to initiate the algorithm.

19.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

20.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

Prim's Algorithm: Added Edge at Step-2

Prim's Algorithm: Added Edge at Step-3

21.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

22.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

Prim's Algorithm: Added Edge at Step-4

Prim's Algorithm: Added Edge at Step-5

23.

24.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

Prim's Algorithm: What is the total cost of the Minimum Spanning Tree that you
formed?

Kruskal's Algorithm: Added Edge at Step-1

25.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

26.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

Kruskal's Algorithm: Added Edge at Step-2

Kruskal's Algorithm: Added Edge at Step-3

27.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

28.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

Kruskal's Algorithm: Added Edge at Step-4

Kruskal's Algorithm: Added Edge at Step-5

29.

Question-
2: Single-
source
Shortest
Path
[Marks: 7]

Five cities, {A, B, C, D, E}, are connected via roads, {(A,B), (A,C), (A,D), (B,C), (B,D), (B,E),
(C,D), (D,E)}, in the following manner AS SHOWN IN THE IMAGE (Figure-2) BELOW.

There is a travel-cost to travel from one city to another (any direction) via the road
connections. Let, all the travel-costs are unique and the travel-cost from City-X to City-
Y is the same as the travel-cost from City-Y to City-X. Moreover, there is a tourist-cost
(associated with every city) which one has to pay if (s)he touches any city while
travelling.

Your are asked to do the following:

[i] Define all the travel-costs and tourist-cost (as a positive number) to make the
above example (wighted undirected graph) complete.
Remember that, all the travel-cost between cities are distinct positive values and the
tourist-cost for the cities are also distinct positive values (though, some travel-cost
may match with some tourist-cost).

[ii] You start from the City-A and want to estimate the minimum cost route to visit all
the other destination cities, {B, C, D, E}. Present the modified version Dijkstra's
algorithm to solve this problem. [Marks = 2]

[iiI] Show the step-wise running (as asked below) of a modified Dijkstra's algorithm
over the example graph that you constructed. [Marks = 5]
More precisely, you shall be updating the two 5-element 1-D arrays, cost[] and parent[
]; where --
--> cost[Z] indicates the minimum-cost values to reach City-Z from City-A.
 Initially, cost[A] = tourist-cost(A), cost[B] = infinity, cost[C] = infinity, cost[D] =
infinity, cost[E] = infinity.
--> parent[Z] indicates the previous city from which City-Z is being reached.
 Initially, parent[A] = null, parent[B] = null, parent[C] = null, parent[D] = null, parent[E]
= null.

Figure-2 (for Question-2)

Kruskal's Algorithm: What is the total cost of the Minimum Spanning Tree that
you formed?

30.

Mark only one oval.

YES

NO

31.

32.

33.

34.

35.

36.

37.

Are you Attempting Question-2? *

Enter Travel-Cost between (A,B)

Enter Travel-Cost between (A,C)

Enter Travel-Cost between (A,D)

Enter Travel-Cost between (B,C)

Enter Travel-Cost between (B,D)

Enter Travel-Cost between (B,E)

Enter Travel-Cost between (C,D)

38.

39.

40.

41.

42.

43.

44.

Enter Travel-Cost between (D,E)

Enter Tourist-Cost for City-A

Enter Tourist-Cost for City-B

Enter Tourist-Cost for City-C

Enter Tourist-Cost for City-D

Enter Tourist-Cost for City-E

Solution: Modified Version of Dijkstra's Algorithm
Assume the following notation while writing the algorithm: The travel-cost between City-X and City-Y is
C[X,Y], the tourist-cost for City-Z is T[Z], and the minimum-cost to a reach City-W from City-A (start-city)
is given by cost[W].

45.

46.

47.

Mark only one oval.

City-A

City-B

City-C

City-D

City-E

48.

49.

Step-0 (Initiation): Enter initial 5-values (in comma-separated format) of the
cost[] array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

Step-0 (Initiation): Enter initial 5-values (in comma-separated format) of the
parent[] array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

Step-1: Starting (First Chosen/Marked) City (Vertex)

Step-1: Enter modified 5-values (in comma-separated format) of the cost[]
array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

Step-1: Enter modified 5-values (in comma-separated format) of the parent[]
array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

50.

Mark only one oval.

City-A

City-B

City-C

City-D

City-E

51.

52.

53.

Mark only one oval.

City-A

City-B

City-C

City-D

City-E

54.

Step-2: Next Chosen/Marked City (Vertex)

Step-2: Enter modified 5-values (in comma-separated format) of the cost[]
array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

Step-2: Enter modified 5-values (in comma-separated format) of the parent[]
array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

Step-3: Next Chosen/Marked City (Vertex)

Step-3: Enter modified 5-values (in comma-separated format) of the cost[]
array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

55.

56.

Mark only one oval.

City-A

City-B

City-C

City-D

City-E

57.

58.

59.

Mark only one oval.

City-A

City-B

City-C

City-D

City-E

Step-3: Enter modified 5-values (in comma-separated format) of the parent[]
array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

Step-4: Next Chosen/Marked City (Vertex)

Step-4: Enter modified 5-values (in comma-separated format) of the cost[]
array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

Step-4: Enter modified 5-values (in comma-separated format) of the parent[]
array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

Step-5: Final Chosen/Marked City (Vertex)

60.

61.

62.

Mark only one oval.

City-B

City-C

City-D

City-E

63.

Mark only one oval.

City-B

City-C

City-D

City-E

Step-5: Enter final 5-values (in comma-separated format) of the cost[] array
(indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

Step-5: Enter final 5-values (in comma-separated format) of the parent[] array
(indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

Costliest-City: Which city requires the MOST cost to be visited from City-A?

Cheapest-City: Which city requires the LEAST cost to be visited from City-A?

Question-
3: All-
pairs
Shortest
Path
[Marks: 7]

Given a weighted directed graph G =<V, E, W>, where the vertices are V = {A,B,C,D,E,F}
(|V| = 6), the directed edges are E = {(A,B), (A,C), (B,C), (B,D), (C,D), (C,E), (D,E), (D,F),
(E,B), (E,F), (F,A)} (|E| = 11), the weights form the set W (specified partially -- only
negative edge-weights are given, that is, W(A,C)=-3, W(C,D)=-4 and W(E,F)=-6 and rest
will be filled by you). PLEASE REFER TO THE IMAGE (Figure-3) GIVEN BELOW.

Your are asked to do the following:

[i] Define only the positive weights (as a positive number) for all remaining edges to
make the example (wighted directed graph) complete.
Remember, each edge-weights should all be distinct positive numbers only (negative
edge-weights are already given).

[ii] Show the step-wise running (as asked below) of Floyd-Warshall's algorithm over
the example graph that you constructed. [Marks = 7]
More precisely, you shall be providing (in row-wise manner for all-6 rows) the 2-D cost
calculation matrix (memoized) values F[][] at every step (you may refer to the lecture-
slides!) and also indicate the number of negative entries in F[][].

Figure-3 (for Question-3)

64.

Mark only one oval.

YES

NO

65.

Are you Attempting Question-3? *

Enter Weight of Directed Edge-(A,B)

66.

67.

68.

69.

70.

71.

72.

73.

Enter Weight of Directed Edge-(B,C)

Enter Weight of Directed Edge-(B,D)

Enter Weight of Directed Edge-(C,E)

Enter Weight of Directed Edge-(D,E)

Enter Weight of Directed Edge-(D,F)

Enter Weight of Directed Edge-(E,B)

Enter Weight of Directed Edge-(F,A)

Step-0: Initial 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

74.

75.

76.

77.

78.

79.

Step-0: Initial 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

Step-0: Initial 6-values of Row-3 (in comma-separated format) for Vertex-C in
the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

Step-0: Initial 6-values of Row-4 (in comma-separated format) for Vertex-D in
the 2-D cost-matrix, i.e. F[4][]

For "infinity", write INFY for that entry

Step-0: Initial 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

Step-0: Initial 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

80.

81.

82.

83.

84.

85.

Step-1: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C in
the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D in
the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

86.

87.

88.

89.

90.

91.

Step-2: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C
in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D
in the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

92.

93.

94.

95.

96.

97.

Step-3: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C
in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D
in the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry

Step-4: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

98.

99.

100.

101.

102.

103.

Step-4: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B
in the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

Step-4: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C
in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

Step-4: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D
in the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry

Step-4: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E
in the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

Step-4: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F
in the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A
in the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

104.

105.

106.

107.

108.

109.

Step-5: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B
in the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C
in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D
in the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E
in the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F
in the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry

110.

111.

112.

113.

114.

Step-6: Final 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-3 (in comma-separated format) for Vertex-C in
the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-4 (in comma-separated format) for Vertex-D in
the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry

115.

Mark only one oval.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Finally, how many entries have negative values in your (memoized) cost-
calculation matrix, F[][] (having 6x6 dimension)?

31

32

33

34

35

36

This content is neither created nor endorsed by Google.

 Forms

https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms

