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[ CS21003 : Algorithms-I ] Online-
Quiz/Test
Date: 08-April-2020 (Wednesday)
Time: 10:00 am - 12:00pm (2-hours)
Total Marks: 20 -- Three Questions  [ Q1 = 6-marks  ++  Q2 = 7-marks  ++  Q3 = 7-marks ]
Course: CS21003 -- Algorithms-I
Session: Spring - 2020

INSTRUCTIONS: (Please read carefully!)
  -- There are THREE questions. You are asked to answer ALL of these.
  -- It is advised that you first read the question, solve it fully in a rough-paper before going on 
entering the results (all together for that question) in the portal and finally cross-check your 
answers with the entered values.
  -- Within the permitted 2-hours time of online-test, you can update/modify/correct your 
answers and re-submit with your log-in, as many times as you require.
  -- You are free to consult any resources you want, but plagiarisms will be severely penalized 
(as per institute norms).
  -- *comma-separated format* means providing values of an array/list in sequence separated 
by only comma(,) and nothing else.
[ To enter an example 4-valued array, say ARR[ ] = {4, 7, 5, -2}, in comma-separated format, it 
will be written as ONLY 4, 7, 5, -2 (i.e. 4 values in sequence + 3 commas in between and 
NOTHING ELSE) ]

NOTE: You NEED to SIGN-IN to your GOOGLE account to participate in this Online Quiz/Test.
* Required

Name *

Roll-Number *



4.

5.

Check all that apply.

I have read the INSTRUCTIONS and understood the same. I hereby indicate my
participation in the Online-Quiz/Test.

Question-
1:
Minimum
Spanning
Tree
[Marks: 6]

Given a weighted undirected graph G =<V, E, W>, where the vertices are V = 
{A,B,C,D,E,F} (|V| = 6), the edges are E = {(A,B), (A,D), (A,E), (B,C), (B,D), (B,E), (B,F), 
(C,E), (C,F), (D,E), (E,F)} (|E| = 11), the weights form the set W (not specified and you 
have to enter). PLEASE REFER TO THE IMAGE (Figure-1) GIVEN BELOW.

Your are asked to do the following:

[i] Define the weights (as a positive number) for each edge to make the example 
(wighted undirected graph) complete.
Remember, every edge-weight should be a distinct number.

[ii] Show the step-wise running (as asked below) of Prim's algorithm over the example 
graph that you constructed. Assume that, 'A' be the starting vertex/node to initiate this 
algorithm.    [Marks = 3]
More precisely, you shall be notifying the next edge to be added at every step.

[iii] Show the step-wise running (as asked below) of Kruskal's algorithm over the 
example graph that you constructed.    [Marks = 3]
More precisely, you shall be notifying the next edge to be added at every step.

Figure-1 (for Question-1)

Department *

Disclaimer *
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Mark only one oval.

YES

NO

7.

8.

9.

10.

11.

12.

13.

Are you Attempting Question-1? *

Enter Weight of Edge-(A,B)

Enter Weight of Edge-(A,D)

Enter Weight of Edge-(A,E)

Enter Weight of Edge-(B,C)

Enter Weight of Edge-(B,D)

Enter Weight of Edge-(B,E)

Enter Weight of Edge-(B,F)
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15.

16.

17.

18.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

Enter Weight of Edge-(C,E)

Enter Weight of Edge-(C,F)

Enter Weight of Edge-(D,E)

Enter Weight of Edge-(E,F)

Prim's Algorithm: Added Edge at Step-1
Let, 'A' be the starting vertex/node to initiate the algorithm.
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Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

20.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

Prim's Algorithm: Added Edge at Step-2

Prim's Algorithm: Added Edge at Step-3



21.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

22.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

Prim's Algorithm: Added Edge at Step-4

Prim's Algorithm: Added Edge at Step-5
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24.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

Prim's Algorithm: What is the total cost of the Minimum Spanning Tree that you
formed?

Kruskal's Algorithm: Added Edge at Step-1
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Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

26.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

Kruskal's Algorithm: Added Edge at Step-2

Kruskal's Algorithm: Added Edge at Step-3
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Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

28.

Mark only one oval.

Edge-(A,B)

Edge-(A,D)

Edge-(A,E)

Edge-(B,C)

Edge-(B,D)

Edge-(B,E)

Edge-(B,F)

Edge-(C,E)

Edge-(C,F)

Edge-(D,E)

Edge-(E,F)

Kruskal's Algorithm: Added Edge at Step-4

Kruskal's Algorithm: Added Edge at Step-5



29.

Question-
2: Single-
source
Shortest
Path
[Marks: 7]

Five cities, {A, B, C, D, E}, are connected via roads, {(A,B), (A,C), (A,D), (B,C), (B,D), (B,E), 
(C,D), (D,E)}, in the following manner AS SHOWN IN THE IMAGE (Figure-2) BELOW.

There is a travel-cost to travel from one city to another (any direction) via the road 
connections. Let, all the travel-costs are unique and the travel-cost from City-X to City-
Y is the same as the travel-cost from City-Y to City-X. Moreover, there is a tourist-cost 
(associated with every city) which one has to pay if (s)he touches any city while 
travelling.

Your are asked to do the following:

[i] Define all the travel-costs and tourist-cost (as a positive number) to make the 
above example (wighted undirected graph) complete.
Remember that, all the travel-cost between cities are distinct positive values and the 
tourist-cost for the cities are also distinct positive values (though, some travel-cost 
may match with some tourist-cost).

[ii] You start from the City-A and want to estimate the minimum cost route to visit all 
the other destination cities, {B, C, D, E}. Present the modified version Dijkstra's 
algorithm to solve this problem.    [Marks = 2]

[iiI] Show the step-wise running (as asked below) of a modified Dijkstra's algorithm 
over the example graph that you constructed.    [Marks = 5]
More precisely, you shall be updating the two 5-element 1-D arrays, cost[ ] and parent[ 
]; where --
--> cost[Z] indicates the minimum-cost values to reach City-Z from City-A.
     Initially, cost[A] = tourist-cost(A), cost[B] = infinity, cost[C] = infinity, cost[D] = 
infinity, cost[E] = infinity.
--> parent[Z] indicates the previous city from which City-Z is being reached.
     Initially, parent[A] = null, parent[B] = null, parent[C] = null, parent[D] = null, parent[E] 
= null.

Figure-2 (for Question-2)

Kruskal's Algorithm: What is the total cost of the Minimum Spanning Tree that
you formed?
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Mark only one oval.

YES

NO

31.

32.

33.

34.

35.

36.

37.

Are you Attempting Question-2? *

Enter Travel-Cost between (A,B)

Enter Travel-Cost between (A,C)

Enter Travel-Cost between (A,D)

Enter Travel-Cost between (B,C)

Enter Travel-Cost between (B,D)

Enter Travel-Cost between (B,E)

Enter Travel-Cost between (C,D)
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39.

40.

41.

42.

43.

44.

Enter Travel-Cost between (D,E)

Enter Tourist-Cost for City-A

Enter Tourist-Cost for City-B

Enter Tourist-Cost for City-C

Enter Tourist-Cost for City-D

Enter Tourist-Cost for City-E

Solution: Modified Version of Dijkstra's Algorithm
Assume the following notation while writing the algorithm: The travel-cost between City-X and City-Y is
C[X,Y], the tourist-cost for City-Z is T[Z], and the minimum-cost to a reach City-W from City-A (start-city)
is given by cost[W].
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46.

47.

Mark only one oval.

City-A

City-B

City-C

City-D

City-E

48.

49.

Step-0 (Initiation): Enter initial 5-values (in comma-separated format) of the
cost[ ] array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

Step-0 (Initiation): Enter initial 5-values (in comma-separated format) of the
parent[ ] array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

Step-1: Starting (First Chosen/Marked) City (Vertex)

Step-1: Enter modified 5-values (in comma-separated format) of the cost[ ]
array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

Step-1: Enter modified 5-values (in comma-separated format) of the parent[ ]
array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry



50.

Mark only one oval.

City-A

City-B

City-C

City-D

City-E

51.

52.

53.

Mark only one oval.

City-A

City-B

City-C

City-D

City-E

54.

Step-2: Next Chosen/Marked City (Vertex)

Step-2: Enter modified 5-values (in comma-separated format) of the cost[ ]
array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

Step-2: Enter modified 5-values (in comma-separated format) of the parent[ ]
array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

Step-3: Next Chosen/Marked City (Vertex)

Step-3: Enter modified 5-values (in comma-separated format) of the cost[ ]
array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry



55.

56.

Mark only one oval.

City-A

City-B

City-C

City-D

City-E

57.

58.

59.

Mark only one oval.

City-A

City-B

City-C

City-D

City-E

Step-3: Enter modified 5-values (in comma-separated format) of the parent[ ]
array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

Step-4: Next Chosen/Marked City (Vertex)

Step-4: Enter modified 5-values (in comma-separated format) of the cost[ ]
array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

Step-4: Enter modified 5-values (in comma-separated format) of the parent[ ]
array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

Step-5: Final Chosen/Marked City (Vertex)
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61.

62.

Mark only one oval.

City-B

City-C

City-D

City-E

63.

Mark only one oval.

City-B

City-C

City-D

City-E

Step-5: Enter final 5-values (in comma-separated format) of the cost[ ] array
(indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry

Step-5: Enter final 5-values (in comma-separated format) of the parent[ ] array
(indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry

Costliest-City: Which city requires the MOST cost to be visited from City-A?

Cheapest-City: Which city requires the LEAST cost to be visited from City-A?



Question-
3: All-
pairs
Shortest
Path
[Marks: 7]

Given a weighted directed graph G =<V, E, W>, where the vertices are V = {A,B,C,D,E,F} 
(|V| = 6), the directed edges are E = {(A,B), (A,C), (B,C), (B,D), (C,D), (C,E), (D,E), (D,F), 
(E,B), (E,F), (F,A)} (|E| = 11), the weights form the set W (specified partially -- only 
negative edge-weights are given, that is, W(A,C)=-3, W(C,D)=-4 and W(E,F)=-6 and rest 
will be filled by you). PLEASE REFER TO THE IMAGE (Figure-3) GIVEN BELOW.

Your are asked to do the following:

[i] Define only the positive weights (as a positive number) for all remaining edges to 
make the example (wighted directed graph) complete.
Remember, each edge-weights should all be distinct positive numbers only (negative 
edge-weights are already given).

[ii] Show the step-wise running (as asked below) of Floyd-Warshall's algorithm over 
the example graph that you constructed.    [Marks = 7]
More precisely, you shall be providing (in row-wise manner for all-6 rows) the 2-D cost 
calculation matrix (memoized) values F[ ][ ] at every step (you may refer to the lecture-
slides!) and also indicate the number of negative entries in F[ ][ ].

Figure-3 (for Question-3)

64.

Mark only one oval.

YES

NO

65.

Are you Attempting Question-3? *

Enter Weight of Directed Edge-(A,B)



66.

67.

68.

69.

70.

71.

72.

73.

Enter Weight of Directed Edge-(B,C)

Enter Weight of Directed Edge-(B,D)

Enter Weight of Directed Edge-(C,E)

Enter Weight of Directed Edge-(D,E)

Enter Weight of Directed Edge-(D,F)

Enter Weight of Directed Edge-(E,B)

Enter Weight of Directed Edge-(F,A)

Step-0: Initial 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][ ]
For "infinity", write INFY for that entry



74.

75.

76.

77.

78.

79.

Step-0: Initial 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][ ]
For "infinity", write INFY for that entry

Step-0: Initial 6-values of Row-3 (in comma-separated format) for Vertex-C in
the 2-D cost-matrix, i.e. F[3][ ]
For "infinity", write INFY for that entry

Step-0: Initial 6-values of Row-4 (in comma-separated format) for Vertex-D in
the 2-D cost-matrix, i.e. F[4][ ]

For "infinity", write INFY for that entry

Step-0: Initial 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][ ]
For "infinity", write INFY for that entry

Step-0: Initial 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[6][ ]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][ ]
For "infinity", write INFY for that entry



80.

81.

82.

83.

84.

85.

Step-1: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][ ]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C in
the 2-D cost-matrix, i.e. F[3][ ]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D in
the 2-D cost-matrix, i.e. F[4][ ]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][ ]
For "infinity", write INFY for that entry

Step-1: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[6][ ]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][ ]
For "infinity", write INFY for that entry



86.

87.

88.

89.

90.

91.

Step-2: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][ ]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C
in the 2-D cost-matrix, i.e. F[3][ ]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D
in the 2-D cost-matrix, i.e. F[4][ ]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][ ]
For "infinity", write INFY for that entry

Step-2: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[6][ ]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][ ]
For "infinity", write INFY for that entry



92.

93.

94.

95.

96.

97.

Step-3: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][ ]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C
in the 2-D cost-matrix, i.e. F[3][ ]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D
in the 2-D cost-matrix, i.e. F[4][ ]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][ ]
For "infinity", write INFY for that entry

Step-3: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[6][ ]
For "infinity", write INFY for that entry

Step-4: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][ ]
For "infinity", write INFY for that entry



98.

99.

100.

101.

102.

103.

Step-4: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B
in the 2-D cost-matrix, i.e. F[2][ ]
For "infinity", write INFY for that entry

Step-4: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C
in the 2-D cost-matrix, i.e. F[3][ ]
For "infinity", write INFY for that entry

Step-4: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D
in the 2-D cost-matrix, i.e. F[4][ ]
For "infinity", write INFY for that entry

Step-4: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E
in the 2-D cost-matrix, i.e. F[5][ ]
For "infinity", write INFY for that entry

Step-4: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F
in the 2-D cost-matrix, i.e. F[6][ ]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A
in the 2-D cost-matrix, i.e. F[1][ ]
For "infinity", write INFY for that entry
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105.

106.

107.

108.

109.

Step-5: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B
in the 2-D cost-matrix, i.e. F[2][ ]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C
in the 2-D cost-matrix, i.e. F[3][ ]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D
in the 2-D cost-matrix, i.e. F[4][ ]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E
in the 2-D cost-matrix, i.e. F[5][ ]
For "infinity", write INFY for that entry

Step-5: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F
in the 2-D cost-matrix, i.e. F[6][ ]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-1 (in comma-separated format) for Vertex-A in
the 2-D cost-matrix, i.e. F[1][ ]
For "infinity", write INFY for that entry



110.

111.

112.

113.

114.

Step-6: Final 6-values of Row-2 (in comma-separated format) for Vertex-B in
the 2-D cost-matrix, i.e. F[2][ ]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-3 (in comma-separated format) for Vertex-C in
the 2-D cost-matrix, i.e. F[3][ ]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-4 (in comma-separated format) for Vertex-D in
the 2-D cost-matrix, i.e. F[4][ ]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-5 (in comma-separated format) for Vertex-E in
the 2-D cost-matrix, i.e. F[5][ ]
For "infinity", write INFY for that entry

Step-6: Final 6-values of Row-6 (in comma-separated format) for Vertex-F in
the 2-D cost-matrix, i.e. F[5][ ]
For "infinity", write INFY for that entry
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Mark only one oval.
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Finally, how many entries have negative values in your (memoized) cost-
calculation matrix, F[ ][ ] (having 6x6 dimension)?
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