[CS21003: Algorithms-I] Online-
 Quiz/Test

Date: 08-April-2020 (Wednesday)
Time: 10:00 am - 12:00pm (2-hours)
Total Marks: 20 -- Three Questions [Q1 = 6-marks ++ Q2 = 7-marks ++ Q3 = 7-marks]
Course: CS21003 -- Algorithms-I
Session: Spring - 2020

INSTRUCTIONS: (Please read carefully!)
-- There are THREE questions. You are asked to answer ALL of these.
-- It is advised that you first read the question, solve it fully in a rough-paper before going on entering the results (all together for that question) in the portal and finally cross-check your answers with the entered values.
-- Within the permitted 2-hours time of online-test, you can update/modify/correct your answers and re-submit with your log-in, as many times as you require.
-- You are free to consult any resources you want, but plagiarisms will be severely penalized (as per institute norms).
-- *comma-separated format* means providing values of an array/list in sequence separated by only comma(,) and nothing else.
[To enter an example 4-valued array, say $\operatorname{ARR}[]=\{4,7,5,-2\}$, in comma-separated format, it will be written as ONLY 4, 7, 5, -2 (i.e. 4 values in sequence +3 commas in between and NOTHING ELSE)]

NOTE: You NEED to SIGN-IN to your GOOGLE account to participate in this Online Quiz/Test.

* Required

1. Email address *
2. Name *
3. Roll-Number *
4. Department *
5. Disclaimer *

Check all that apply.

I have read the INSTRUCTIONS and understood the same. I hereby indicate my participation in the Online-Quiz/Test.

Question-

1:
Minimum
Given a weighted undirected graph $G=<\mathrm{V}, \mathrm{E}, \mathrm{W}>$, where the vertices are $\mathrm{V}=$ $\{A, B, C, D, E, F\}(|V|=6)$, the edges are $E=\{(A, B),(A, D),(A, E),(B, C),(B, D),(B, E),(B, F)$, $(C, E),(C, F),(D, E),(E, F)\}(|E|=11)$, the weights form the set W (not specified and you have to enter). PLEASE REFER TO THE IMAGE (Figure-1) GIVEN BELOW.

Your are asked to do the following:
[i] Define the weights (as a positive number) for each edge to make the example (wighted undirected graph) complete.
Remember, every edge-weight should be a distinct number.
Spanning
Tree
[Marks: 6]
[ii] Show the step-wise running (as asked below) of Prim's algorithm over the example graph that you constructed. Assume that, 'A' be the starting vertex/node to initiate this algorithm. [Marks = 3]
More precisely, you shall be notifying the next edge to be added at every step.
[iii] Show the step-wise running (as asked below) of Kruskal's algorithm over the example graph that you constructed. [Marks = 3]
More precisely, you shall be notifying the next edge to be added at every step.

Figure-1 (for Question-1)

6. Are you Attempting Question-1? *

Mark only one oval.YESNO
7. Enter Weight of Edge-(A,B)
\qquad
8. Enter Weight of Edge-(A,D)
\qquad
9. Enter Weight of Edge-(A,E)
10. Enter Weight of Edge-(B,C)
11. Enter Weight of Edge-(B,D)
\qquad
12. Enter Weight of Edge-(B,E)
13. Enter Weight of Edge-(B,F)
14. Enter Weight of Edge-(C,E)
15. Enter Weight of Edge-(C,F)
16. Enter Weight of Edge-(D,E)
17. Enter Weight of Edge-(E,F)
18. Prim's Algorithm: Added Edge at Step-1

Let, 'A' be the starting vertex/node to initiate the algorithm.
Mark only one oval.Edge-(A,B)Edge-(A,D)Edge-(A,E)Edge-(B,C)Edge-(B,D)Edge-(B,E)Edge-(B,F)Edge-(C,E)Edge-(C,F)Edge-(D,E)Edge-(E,F)
19. Prim's Algorithm: Added Edge at Step-2

Mark only one oval.Edge-(A,B)Edge-(A,D)Edge-(A,E)Edge-(B,C)Edge-(B,D)Edge-(B,E)Edge-(B,F)Edge-(C,E)Edge-(C,F)Edge-(D,E)Edge-(E,F)
20. Prim's Algorithm: Added Edge at Step-3

Mark only one oval.Edge-(A,B)Edge-(A,D)Edge-(A,E)Edge-(B,C)Edge-(B,D)Edge-(B,E)Edge-(B,F)Edge-(C,E)Edge-(C,F)Edge-(D,E)Edge-(E,F)
21. Prim's Algorithm: Added Edge at Step-4

Mark only one oval.Edge-(A,B)Edge-(A,D)Edge-(A,E)Edge-(B,C)Edge-(B,D)Edge-(B,E)Edge-(B,F)Edge-(C,E)Edge-(C,F)Edge-(D,E)Edge-(E,F)
22. Prim's Algorithm: Added Edge at Step-5

Mark only one oval.Edge-(A,B)Edge-(A,D)Edge-(A, E)Edge-(B,C)Edge-(B,D)Edge-(B,E)Edge-(B,F)Edge-(C,E)Edge-(C,F)Edge-(D,E)Edge-(E,F)
23. Prim's Algorithm: What is the total cost of the Minimum Spanning Tree that you formed?
24. Kruskal's Algorithm: Added Edge at Step-1

Mark only one oval.Edge-(A,B)Edge-(A,D)Edge-(A,E)Edge-(B,C)Edge-(B,D)Edge-(B,E)Edge-(B,F)Edge-(C,E)Edge-(C,F)Edge-(D,E)Edge-(E,F)
25. Kruskal's Algorithm: Added Edge at Step-2

Mark only one oval.Edge-(A,B)Edge-(A,D)Edge-(A, E)Edge-(B,C)Edge-(B,D)Edge-(B,E)Edge-(B,F)Edge-(C,E)Edge-(C,F)Edge-(D,E)Edge-(E,F)
26. Kruskal's Algorithm: Added Edge at Step-3

Mark only one oval.Edge-(A,B)Edge-(A,D)Edge-(A,E)Edge-(B,C)Edge-(B,D)Edge-(B,E)Edge-(B,F)Edge-(C,E)Edge-(C,F)Edge-(D,E)Edge-(E,F)
27. Kruskal's Algorithm: Added Edge at Step-4

Mark only one oval.Edge-(A,B)Edge-(A,D)Edge-(A,E)Edge-(B,C)Edge-(B,D)Edge-(B,E)Edge-(B,F)Edge-(C,E)Edge-(C,F)Edge-(D,E)Edge-(E,F)
28. Kruskal's Algorithm: Added Edge at Step-5

Mark only one oval.Edge-(A,B)Edge-(A,D)Edge-(A,E)Edge-(B,C)Edge-(B,D)Edge-(B,E)Edge-(B,F)Edge-(C,E)Edge-(C,F)Edge-(D,E)Edge-(E,F)
29. Kruskal's Algorithm: What is the total cost of the Minimum Spanning Tree that you formed?

Question-

2: Single-
source
Shortest
Path
[Marks: 7]
Five cities, $\{A, B, C, D, E\}$, are connected via roads, $\{(A, B),(A, C),(A, D),(B, C),(B, D),(B, E)$, $(C, D),(D, E)\}$, in the following manner AS SHOWN IN THE IMAGE (Figure-2) BELOW.

There is a travel-cost to travel from one city to another (any direction) via the road connections. Let, all the travel-costs are unique and the travel-cost from City-X to CityY is the same as the travel-cost from City- Y to City- X . Moreover, there is a tourist-cost (associated with every city) which one has to pay if (s)he touches any city while travelling.

Your are asked to do the following:
[i] Define all the travel-costs and tourist-cost (as a positive number) to make the above example (wighted undirected graph) complete.
Remember that, all the travel-cost between cities are distinct positive values and the tourist-cost for the cities are also distinct positive values (though, some travel-cost may match with some tourist-cost).
[ii] You start from the City-A and want to estimate the minimum cost route to visit all the other destination cities, $\{B, C, D, E\}$. Present the modified version Dijkstra's algorithm to solve this problem. [Marks = 2]
[iil] Show the step-wise running (as asked below) of a modified Dijkstra's algorithm over the example graph that you constructed. [Marks = 5]
More precisely, you shall be updating the two 5-element 1-D arrays, cost[] and parent[]; where --
--> $\operatorname{cost}[Z]$ indicates the minimum-cost values to reach City-Z from City-A.
Initially, $\operatorname{cost}[A]=$ tourist-cost(A), cost[B] = infinity, $\operatorname{cost}[C]=$ infinity, $\operatorname{cost}[D]=$ infinity, cost[E] = infinity.
--> parent[Z] indicates the previous city from which City-Z is being reached.
Initially, parent $[A]=$ null, parent $[B]=$ null, parent $[C]=$ null, parent[D] = null, parent[E]
= null.

Figure-2 (for Question-2)

30. Are you Attempting Question-2? *

Mark only one oval.YESNO
31. Enter Travel-Cost between (A,B)
\qquad
32. Enter Travel-Cost between (A,C)
\qquad
33. Enter Travel-Cost between (A,D)
\qquad
34. Enter Travel-Cost between (B,C)
\qquad
35. Enter Travel-Cost between (B,D)
\qquad
36. Enter Travel-Cost between (B,E)
\qquad
37. Enter Travel-Cost between (C,D)
38. Enter Travel-Cost between (D,E)
\qquad
39. Enter Tourist-Cost for City-A
\qquad
40. Enter Tourist-Cost for City-B
\qquad
41. Enter Tourist-Cost for City-C
\qquad
42. Enter Tourist-Cost for City-D
\qquad
43. Enter Tourist-Cost for City-E
\qquad
44. Solution: Modified Version of Dijkstra's Algorithm

Assume the following notation while writing the algorithm: The travel-cost between City- X and City- Y is $\mathrm{C}[\mathrm{X}, \mathrm{Y}]$, the tourist-cost for City-Z is $\mathrm{T}[Z]$, and the minimum-cost to a reach City-W from City-A (start-city) is given by cost[W].
45. Step-0 (Initiation): Enter initial 5-values (in comma-separated format) of the cost[] array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry
46. Step-0 (Initiation): Enter initial 5-values (in comma-separated format) of the parent[] array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry
47. Step-1: Starting (First Chosen/Marked) City (Vertex)

Mark only one oval.City-ACity-BCity-CCity-DCity-E
48. Step-1: Enter modified 5-values (in comma-separated format) of the cost[] array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry
49. Step-1: Enter modified 5-values (in comma-separated format) of the parent[] array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry
50. Step-2: Next Chosen/Marked City (Vertex)

Mark only one oval.City-ACity-BCity-CCity-DCity-E
51. Step-2: Enter modified 5-values (in comma-separated format) of the cost[] array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry
52. Step-2: Enter modified 5-values (in comma-separated format) of the parent[] array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry
\qquad
53. Step-3: Next Chosen/Marked City (Vertex)

Mark only one oval.City-ACity-BCity-CCity-DCity-E
54. Step-3: Enter modified 5-values (in comma-separated format) of the cost[] array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry
55. Step-3: Enter modified 5-values (in comma-separated format) of the parent[] array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry
56. Step-4: Next Chosen/Marked City (Vertex)

Mark only one oval.City-ACity-BCity-CCity-DCity-E
57. Step-4: Enter modified 5-values (in comma-separated format) of the cost[] array (indexed as cost[A, B, C, D, E]).

For "infinity", write INFY for that entry
\qquad
58. Step-4: Enter modified 5-values (in comma-separated format) of the parent[] array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry
\qquad
59. Step-5: Final Chosen/Marked City (Vertex)

Mark only one oval.City-ACity-BCity-CCity-DCity-E
60. Step-5: Enter final 5-values (in comma-separated format) of the cost[] array (indexed as cost[A, B, C, D, E]).
For "infinity", write INFY for that entry
61. Step-5: Enter final 5-values (in comma-separated format) of the parent[] array (indexed as parent[A, B, C, D, E]).
For "null", write NULL for that entry
62. Costliest-City: Which city requires the MOST cost to be visited from City-A? Mark only one oval.City-BCity-CCity-DCity-E
63. Cheapest-City: Which city requires the LEAST cost to be visited from City-A? Mark only one oval.City-BCity-CCity-DCity-E

Question-

3: All-
pairs
Shortest
Path
[Marks: 7]

Given a weighted directed graph $G=\langle V, E, W>$, where the vertices are $V=\{A, B, C, D, E, F\}$ $(|V|=6)$, the directed edges are $E=\{(A, B),(A, C),(B, C),(B, D),(C, D),(C, E),(D, E),(D, F)$, $(E, B),(E, F),(F, A)\}(|E|=11)$, the weights form the set W (specified partially -- only negative edge-weights are given, that is, $W(A, C)=-3, W(C, D)=-4$ and $W(E, F)=-6$ and rest will be filled by you). PLEASE REFER TO THE IMAGE (Figure-3) GIVEN BELOW.

Your are asked to do the following:
[i] Define only the positive weights (as a positive number) for all remaining edges to make the example (wighted directed graph) complete.
Remember, each edge-weights should all be distinct positive numbers only (negative edge-weights are already given).
[ii] Show the step-wise running (as asked below) of Floyd-Warshall's algorithm over the example graph that you constructed. [Marks = 7]
More precisely, you shall be providing (in row-wise manner for all-6 rows) the 2-D cost calculation matrix (memoized) values F[][] at every step (you may refer to the lectureslides!) and also indicate the number of negative entries in $\mathrm{F}[\mathrm{J}[$].

Figure-3 (for Question-3)

64. Are you Attempting Question-3? *

Mark only one oval.

YESNO65. Enter Weight of Directed Edge-(A,B)
66. Enter Weight of Directed Edge-(B,C)
67. Enter Weight of Directed Edge-(B,D)
68. Enter Weight of Directed Edge-(C,E)
\qquad
69. Enter Weight of Directed Edge-(D,E)
\qquad
70. Enter Weight of Directed Edge-(D,F)
\qquad
71. Enter Weight of Directed Edge-(E,B)
\qquad
72. Enter Weight of Directed Edge-(F,A)
\qquad
73. Step-0: Initial 6-values of Row-1 (in comma-separated format) for Vertex-A in the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry
74. Step-0: Initial 6-values of Row-2 (in comma-separated format) for Vertex-B in the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry
75. Step-0: Initial 6-values of Row-3 (in comma-separated format) for Vertex-C in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry
76. Step-0: Initial 6-values of Row-4 (in comma-separated format) for Vertex-D in the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry
\qquad
77. Step-0: Initial 6-values of Row-5 (in comma-separated format) for Vertex-E in the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry
78. Step-0: Initial 6-values of Row-6 (in comma-separated format) for Vertex-F in the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry
79. Step-1: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry
80. Step-1: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry
81. Step-1: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry
82. Step-1: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D in the 2-D cost-matrix, i.e. F[4][]

For "infinity", write INFY for that entry
83. Step-1: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry
84. Step-1: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry
85. Step-2: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in the 2-D cost-matrix, i.e. F[1][]

For "infinity", write INFY for that entry
86. Step-2: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry
87. Step-2: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry
88. Step-2: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D in the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry
\qquad
89. Step-2: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry
90. Step-2: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry
91. Step-3: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in the 2-D cost-matrix, i.e. F[1][]

For "infinity", write INFY for that entry
92. Step-3: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry
93. Step-3: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry
94. Step-3: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D in the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry
\qquad
95. Step-3: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry
96. Step-3: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry
97. Step-4: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry
98. Step-4: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry
99. Step-4: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry
100. Step-4: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D in the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry
\qquad
101. Step-4: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry
\qquad
102. Step-4: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry
\qquad
103. Step-5: Updated 6-values of Row-1 (in comma-separated format) for Vertex-A in the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry
104. Step-5: Updated 6-values of Row-2 (in comma-separated format) for Vertex-B in the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry
105. Step-5: Updated 6-values of Row-3 (in comma-separated format) for Vertex-C in the 2-D cost-matrix, i.e. F[3][]
For "infinity", write INFY for that entry
106. Step-5: Updated 6-values of Row-4 (in comma-separated format) for Vertex-D in the 2-D cost-matrix, i.e. F[4][]
For "infinity", write INFY for that entry
\qquad
107. Step-5: Updated 6-values of Row-5 (in comma-separated format) for Vertex-E in the 2-D cost-matrix, i.e. F[5][]
For "infinity", write INFY for that entry
\qquad
108. Step-5: Updated 6-values of Row-6 (in comma-separated format) for Vertex-F in the 2-D cost-matrix, i.e. F[6][]
For "infinity", write INFY for that entry
\qquad
109. Step-6: Final 6-values of Row-1 (in comma-separated format) for Vertex-A in the 2-D cost-matrix, i.e. F[1][]
For "infinity", write INFY for that entry
110. Step-6: Final 6-values of Row-2 (in comma-separated format) for Vertex-B in the 2-D cost-matrix, i.e. F[2][]
For "infinity", write INFY for that entry
111. Step-6: Final 6-values of Row-3 (in comma-separated format) for Vertex-C in the 2-D cost-matrix, i.e. F[3][]

For "infinity", write INFY for that entry
112. Step-6: Final 6-values of Row-4 (in comma-separated format) for Vertex-D in the 2-D cost-matrix, i.e. F[4][]

For "infinity", write INFY for that entry
113. Step-6: Final 6-values of Row-5 (in comma-separated format) for Vertex-E in the 2-D cost-matrix, i.e. F[5][]

For "infinity", write INFY for that entry
114. Step-6: Final 6-values of Row-6 (in comma-separated format) for Vertex-F in the 2-D cost-matrix, i.e. F[5][]

For "infinity", write INFY for that entry
115. Finally, how many entries have negative values in your (memoized) costcalculation matrix, F[][] (having 6×6 dimension)?

Mark only one oval.

0

1235678
$\square 9$10111213
141516171920222425 26
27 28
29
30

32
33
34
35
36

This content is neither created nor endorsed by Google.

Google Forms

