	INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR									Stamp / Signature of the	ribar
EXAMINATION (Mid Semester)									SEMESTER (Spring 2019-2020)		
Roil Number								Section	Name		
Subject Number	C	S	2	1	0	0	3	Subject Name	ALGORITHMS - 1		
Department / Center of the Student										Additional sheets	

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.
2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.
3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the subject you are taking examination.
4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed by the paper-setter.
5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However, exchange of these items or any other papers (including question papers) is not permitted.
6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough work. Report to the invigilator if the answer script has torn or distorted page(s).
7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the desk for checking by the invigilator.
8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly prohibited inside the Examination Hall.
9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until the invigilators collect all the answer scripts.
10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or exchanging information with others or any such attempt will be treated as 'unfair means'. Do not adopt unfair means and do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner											
Question Number	1	2	3	4	5	6	7	8	9	10	Total
Marks Obtained											
Marks obtained (in words)				Signature of the Examiner				Signature of the Scrutineer			

Indian Institute of Technology Kharagpur
 Department of Computer Science and Engineering

Algorithms-I (CS21003) Mid-Semester [Maximum Marks: 60] Spring Semester, 2019-2020
Date: 20-Feb-2020 (DAY) || Time: 09:00am - 11:00am || Venue: NR - 111/112/323/324/423/424

Instructions:

- Answer AS MANY questions as you can. The Maximum Marks that you can obtain in 60.
- Write your answers in proper places mentioned in the question paper itself. If you need additional space to complete the answer, please use the blank pages provided at the end of this booklet.
- There are 5 questions in total, each having different total marks. Some questions have multiple parts.
- Be brief and precise. If you use any algorithm / result / formula covered in class, please mention it and do not elaborate / derive.
- Do not use plain English to write / express steps of your algorithm. Write readable pseudocodes (or precise formulations of the solution). If it is necessary, justify the steps of your pseudocode in English.

Q1. Let $f(n), g(n), r(n), s(n)$ be non-negative asymptotic functions. If $f(n)=O(r(n))$ and $g(n)=O(s(n))$, then prove or disprove whether the following always holds:
(a) $f(n)+g(n)=O(r(n)+s(n))$
(b) $f(n)-g(n)=O(r(n)-s(n))$
(c) $f(n) \times g(n)=O(r(n) \times s(n))$
(d) $f(n) \div g(n)=O(r(n) \div s(n))$

Solution:

Since $f(n)=O(r(n))$, hence $f(n) \leq c_{1} \cdot r(n) \quad\left(\forall n \geq n_{1}\right.$ and $\left.c_{1}>0\right)$; and also Since $g(n)=O(s(n))$, hence $g(n) \leq c_{2} . s(n) \quad\left(\forall n \geq n_{2}\right.$ and $\left.c_{2}>0\right)$.
(a) $f(n)+g(n)=O(r(n)+s(n)) \quad \rightarrow \quad$ TRUE

$$
\begin{aligned}
f(n)+g(n) & \leq c_{1} r(n)+c_{2} s(n), \forall n \geq \operatorname{maximum}\left\{n_{1}, n_{2}\right\} \\
& \leq C \cdot(r(n)+s(n)), \text { where } C=\operatorname{maximum}\left\{c_{1}, c_{2}\right\} \\
& =O(r(n)+s(n))
\end{aligned}
$$

(b) $f(n)-g(n)=O(r(n)-s(n)) \quad \rightarrow \quad$ FALSE

Consider the counter-example, $f(n)=4 n+3, r(n)=n+1 \quad$ and $g(n)=2 n+1, s(n)=n$.
(c) $f(n) \times g(n)=O(r(n) \times s(n)) \quad \rightarrow \quad$ TRUE

$$
\begin{aligned}
f(n) \times g(n) & \leq c_{1} r(n) \times c_{2} s(n), \quad \forall n \geq \text { maximum }\left\{n_{1}, n_{2}\right\} \\
& =C \cdot(r(n) \times s(n)), \text { where } C=c_{1} \cdot c_{2} \\
& =O(r(n) \times s(n))
\end{aligned}
$$

(d) $f(n) \div g(n)=O(r(n) \div s(n)) \quad \rightarrow \quad$ FALSE

Consider the counter-example, $f(n)=n^{2}, r(n)=2 n^{2}+2$ and $g(n)=n, s(n)=n^{2}+1$.

Q2. A recursive algorithm gives rise to the following recurrence relation:

$$
T(n)=\left\{\begin{array}{ll}
b, & \text { if } n=1 \\
T\left(\frac{n}{3}\right)+T\left(\frac{2 n}{3}\right)+c n, & \text { if } n>1
\end{array} \quad \text { (assume, } b \text { and } c\right. \text { are constants) }
$$

Solve the recurrence and deduce the running time $T(n)$ in asymptotic Θ-notation. Please note that, you must prove both ends to derive the asymptotic Θ-bound.
[Marks: 8]

Solution:

Procedure-1: (By Expansion using Recurrence-Tree)

$$
\begin{aligned}
T(n) & =T\left(\frac{n}{3}\right)+T\left(\frac{2 n}{3}\right)+c n \\
& =\left[T\left(\frac{n}{3^{2}}\right)+T\left(\frac{2 n}{3^{2}}\right)+c \cdot\left(\frac{n}{3}\right)\right]+\left[T\left(\frac{2 n}{3^{2}}\right)+T\left(\frac{4 n}{3^{2}}\right)+c \cdot\left(\frac{2 n}{3}\right)\right]+c n=T\left(\frac{n}{3^{2}}\right)+2 T\left(\frac{2 n}{3^{2}}\right)+T\left(\frac{4 n}{3^{2}}\right)+c\left(\frac{n}{3}+\frac{2 n}{3}\right)+c n \\
& =\binom{2}{0} \cdot T\left(\frac{2^{0} \cdot n}{3^{2}}\right)+\binom{2}{1} \cdot T\left(\frac{2^{1} \cdot n}{3^{2}}\right)+\binom{2}{2} \cdot T\left(\frac{2^{2} \cdot n}{3^{2}}\right)+2 c n \\
& =\binom{3}{0} \cdot T\left(\frac{2^{0} \cdot n}{3^{3}}\right)+\binom{3}{1} \cdot T\left(\frac{2^{1} \cdot n}{3^{3}}\right)+\binom{3}{2} \cdot T\left(\frac{2^{2} \cdot n}{3^{3}}\right)+\binom{3}{3} \cdot T\left(\frac{2^{3} \cdot n}{3^{3}}\right)+3 c n \\
& =\cdots \cdots \cdots \cdots+\left(\begin{array}{l}
l \\
\\
\end{array}=\binom{l}{0} \cdot T\left(\frac{2^{0} \cdot n}{3^{l}}\right)+\binom{l}{1} \cdot T\left(\frac{2^{1} \cdot n}{3^{l}}\right)+\binom{l}{2} \cdot T\left(\frac{2^{2} \cdot n}{3^{l}}\right)+\cdots+\left(\frac{2^{l} \cdot n}{3^{l}}\right)+l c n\right. \\
& =\sum_{i=0}^{l}\binom{l}{i} T\left(\frac{2^{i} \cdot n}{3^{l}}\right)+l c n \quad \quad[\text { Note: You may draw the recurrence tree for better visualization.] }
\end{aligned}
$$

Hence, we can say that, when n is asymptotically large (assuming $n=3^{j}$),

$$
\therefore T(n) \geq T\left(\frac{n}{3^{j}}\right)+j c n=T(1)+\left(\log _{3} n\right) \cdot c n=b+c n \log _{3} n \geq c^{\prime} n \log _{2} n
$$

Again, we can also say that, when n is asymptotically large (assuming $\left.n=\left(\frac{3}{2}\right)^{k}\right)$,

$$
\therefore T(n) \leq T\left(\frac{n}{\left(\frac{3}{2}\right)^{k}}\right)+k c n=T(1)+\left(\log _{\frac{3}{2}} n\right) \cdot c n=b+c n \log _{\frac{3}{2}} n \leq c^{\prime \prime} n \log _{2} n
$$

Therefore, we may conclude that, $\quad c^{\prime} n \log _{2} n \leq T(n) \leq c^{\prime \prime} n \log _{2} n \Longrightarrow T(n)=\Theta\left(n \log _{2} n\right)$

Procedure-2: (By Substitution from Initial-Guess)

Let us guess the solution of the relation is, $T(n) \leq d n \log _{2} n$ (where $d \geq 0$ is a constant).

$$
\begin{aligned}
T(n) & \leq T\left(\frac{n}{3}\right)+T\left(\frac{2 n}{3}\right)+c n \\
& \leq d\left(\frac{n}{3}\right) \log _{2}\left(\frac{n}{3}\right)+d\left(\frac{2 n}{3}\right) \log _{2}\left(\frac{2 n}{3}\right)+c n \\
& =\left[d\left(\frac{n}{3}\right) \log _{2} n-d\left(\frac{n}{3}\right) \log _{2} 3\right]+\left[d\left(\frac{2 n}{3}\right) \log _{2} n-d\left(\frac{2 n}{3}\right) \log _{2}\left(\frac{3}{2}\right)\right]+c n \\
& =d n \log _{2} n-d\left(\left(\frac{n}{3}\right) \log _{2} 3+\left(\frac{2 n}{3}\right) \log _{2}\left(\frac{3}{2}\right)\right)+c n \\
& \left.=d n \log _{2} n-d\left(\left(\frac{n}{3}\right) \log _{2} 3+\left(\frac{2 n}{3}\right) \log _{2} 3-\left(\frac{2 n}{3}\right) \log _{2} 2\right)\right)+c n \\
& =d n \log _{2} n-d n\left(\log _{2} 3-\left(\frac{2}{3}\right)\right)+c n \\
& \leq d n \log _{2} n \quad \ldots \ldots \text { whenever } d \geq \frac{c}{\log _{2} 3-\frac{2}{3}}
\end{aligned}
$$

Similarly, we can also show from the initial guess that, $T(n) \geq d^{\prime} n \log _{2} n$, for some $d^{\prime} \leq \frac{c}{\log _{2} 3-\frac{2}{3}}$.
Therefore, we may conclude that, $d^{\prime} n \log _{2} n \leq T(n) \leq d n \log _{2} n \Longrightarrow T(n)=\Theta\left(n \log _{2} n\right)$

Q3. An inversion of an array $A[1 . . n]$ of n distinct integer elements is a pair $\langle i, j\rangle$ such that $i<j$ and $A[i]>A[j]$. Your task is to determine the number of inversions present in an array. For example, the array $A[1 . .8]=\{4,8,9,3,7,6,2,5\}$ has a total of 18 inversions. In particular, the element-pair $\langle 1,4\rangle$ (since $A[1]=4$ and $A[4]=3$, so $1<4$ but $A[1]=4>3=A[4]$) presents one such inversion in $A[1 . .8]$. Answer the following three parts:
[Marks: (4+2) + (7+2) + $\mathbf{3}=\mathbf{1 8}]$
(i) Design an algorithm to solve the problem which runs in $\Theta\left(n^{2}\right)$-time. Also, deduce the given time-complexity from your algorithm.
(ii) Design an efficient algorithm to solve the same problem and deduce the time-complexity of your newly proposed algorithm.
[Hint: $O\left(n \log _{2} n\right)$-time is achievable.]
(iii) Clearly show the working steps of your proposed $O\left(n \log _{2} n\right)$-time algorithm (above) in the following example with eight elements, $A[1 . .8]=\{4,8,9,3,7,6,2,5\}$.

Solution-(i):

```
Algorithm:
count = count_inversion_iterative (A[], n)
{
    Initialize count = 0.
    loop for i = 1 to n-1, do:
        loop for j = i+1 to n, do:
            if (A[i] > A[j]), then increment count by 1.
    return count.
}
```


Time-Complexity:

The expensive steps of this algorithm are the two nested loops and it performs $O(1)$-time (say, constant-time c) operations in the innermost region of the loop. The operations outside loop are constant-time (say, d) operations. So, the time-complexity is $=$

$$
T(n)=d+\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} c=d+\sum_{i=1}^{n-1} c(n-i)=d+c n(n-1)+\frac{n(n-1)}{2}=\boldsymbol{\Theta}\left(n^{2}\right)
$$

Solution-(ii):

```
Algorithm:
count = count_inversion_recursive (A[low..high])
{
    Initialize count = 0.
    Initialize a list TEMP of size (high-low+1).
    if (low < high), then do:
        set mid to (low + high)/2.
        count = count + count_inversion_recursive (A[low..mid]).
        count = count + count_inversion_recursive (A[mid+1..high]).
        count = merge_count (A[low..mid], A[mid+1..high], TEMP).
        copy back TEMP into A[low..high].
    return count.
}
merge_count = merge_count (A[ll..lr], A[rl..rr], TEMP)
{
    if (ll > lr) AND (rl > rr) return 0.
    else if (ll > lr), then
        return merge_count (A[ll..lr], A[rl+1..rr], TEMP)
    else if (rl > rr), then
        return merge_count (A[ll+1..lr], A[rl..rr], TEMP)
    else, do:
        if (A[ll] <= A[rl]), then do:
                append A[ll] to TEMP.
                return merge_count (A[ll+1..lr], A[rl..rr], TEMP).
            else, do:
                append A[rl] to TEMP.
                return (lr-ll+1) + merge_count (A[ll..lr], A[rl+1..rr], TEMP).
}
```

Explanation:
$\overline{\text { A modified }}$ merge-sort can be used to count the number of inversions. It may be observed that the only way in which array elements change their positions is within the MERGE procedure. Moreover, the change of position occurs only when an element in left sorted half is greater than some element in right sorted half. Also note that, once a pair of number $\langle x, y\rangle(x>y)$ such that $x \in$ Left Half and $y \in$ Right Half have exchanged positions, their relative order never changes again as they belong to the same sorted list from there on. Now, let us look at counting the number of inversions while merging. For every $y \in$ Right Half, select the smallest x such that $x>y$ and $x \in$ Left Half. Now, the total number of inversions induced by this y is equal to the inversion with x plus its inversions with all elements greater than x - that is, only those which resides in the sorted left half after/right-to x. Thus, we can obtain the total inversions while merging by summing it for every such y. Therefore, the above algorithm (similar to merge-sort) realizes the total number of inversions in an array.

Time-Complexity:

The merge_count routine has similar time-complexity as the procedure MERGE which is $O(n)$. So, the above recursive formulation of the overall inversion-count algorithm gives rise to similar recurrence relation as in merge-sort.

$$
T(n)=T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+T\left(\left\lceil\frac{n}{2}\right\rceil\right)+O(n) \approx 2 T\left(\frac{n}{2}\right)+O(n)=O\left(n \log _{2} n\right)
$$

Example:
Actual Number of Inversions in A[8] = 18
(inversion count for individual element is shown)

Total Inversions $=(+1+1)+(+2+2+2)+(+4+2+2+2)=18$

Q4. Suppose you are given a set, $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, of tasks, where task a_{i} requires p_{i} units of processing time to complete, once it has started. You have one computer on which to run these tasks, and the computer can run only one task at a time. Let c_{i} be the completion time of task a_{i}, that is, the time at which task a_{i} completes processing. Your goal is to minimize the average completion time, that is, to minimize $\frac{1}{n} \sum_{i=1}^{n} c_{i}$. For example, suppose there are two tasks, a_{1} and a_{2} with $p_{1}=5$ and $p_{2}=3$, and consider the schedule in which a_{1} runs first, followed by a_{2}. Then, $c_{1}=5$ and $c_{2}=8$, and the average completion time is $\frac{(5+8)}{2}=6.5$ units. Whereas, if we schedule a_{2} first, followed by a_{1}. Then, $c_{2}=3$ and $c_{1}=8$, and the average completion time is $\frac{(3+8)}{2}=5.5$ units.
Answer the following two parts:
[Marks: $(3+1)+4=8]$
(i) Give an algorithm that schedules the tasks so as to minimize the average completion time. Each task must run non-preemptively, that is, once task a_{i} is started, it must run continuously for p_{i} units of time. Also, state the running time of your algorithm in $\operatorname{Big}-O$ notation.
(ii) Prove the optimality of your algorithm, that is, it minimizes the average completion time.

Solution-(i):

Algorithm:

$\overline{\text { Step-1: Sort the tasks according to their processing times in ascending order. }}$
Step-2: Schedule the tasks one-by-one starting from the shortest processing time.

Time-Complexity:
Since sorting using an efficient algorithm (say, merge-sort) takes $O\left(n \log _{2} n\right)$ time, so the above greedy procedure takes an overall $O\left(n \log _{2} n\right)$ time.

Solution-(ii):

Proof for Optimality:
This algorithm uses a greedy strategy. It is shown to be optimal as follows. Suppose, we schedule n tasks in the following order, $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}}$ (where, $\forall j, i_{j} \in[1, n]$), and the completion times are,

$$
c_{i_{1}}=p_{i_{1}}, c_{i_{2}}=\left(p_{i_{1}}+p_{i_{2}}\right), \ldots, c_{i_{n}}=\left(p_{i_{1}}+p_{i_{2}}+\cdots+p_{i_{n}}\right)
$$

Now, the average completion time can be expressed as,

$$
\begin{aligned}
c_{a v g}=\frac{c_{i_{1}}+c_{i_{2}}+\cdots+c_{i_{n}}}{n} & =\frac{1}{n}\left[p_{i_{1}}+\left(p_{i_{1}}+p_{i_{2}}\right)+\cdots+\left(p_{i_{1}}+p_{i_{2}}+\cdots+p_{i_{n}}\right)\right] \\
& \left.=\frac{1}{n}\left[n \cdot p_{i_{1}}+(n-1) \cdot p_{i_{2}}+\cdots+1 \cdot p_{i_{n}}\right)\right]
\end{aligned}
$$

So, we find that $p_{i_{1}}$ is added in the most times (n times), then $p_{i_{2}}$ for $(n-1)$ times, and so on. As a result, to minimize $c_{a v g}, p_{i_{1}}$ should have the shortest processing time, followed by $p_{i_{2}}$, and so on. Otherwise, you could rearrange (swap) the task schedule according to the shorter processing times and produce a faster algorithm. As a result, the greedy property holds and the above algorithm produces optimal result.

Q5. Given two strings, $X=\left[x_{1} x_{2} \ldots x_{n}\right]$ (having length n) and $Y=\left[y_{1} y_{2} \ldots y_{m}\right]$ (having length m), the shortest common supersequence (SCS) is a minimum length string Z such that both X and Y are subsequences of Z. For example, if $X=[a b c b d a b]$ (length 7) and $Y=[b d c a b a]$ (length 6), a SCS is $Z=[a b c b d c a b a]$ (length 9). Your task is to find out the length of the SCS from two input strings of length n and m.
Answer the following five parts:
$[$ Marks: $3+(2+3)+4+(4+4)+4=24]$
(i) Provide a recursive definition to compute the length of the SCS as given in the problem statement.
(ii) Develop a recursive algorithm translating the above definition, without declaring additional space. Also, derive the time-complexity of your algorithm in asymptotic Big- O notation.
(iii) Improve this top-down recursive algorithm with the help of Memoization (using additional space).
(iv) Now, propose an iterative (bottom-up) algorithm for the same problem. Also, provide the time and space complexity of your algorithm in asymptotic Big- O notation (give tight bounds).
(v) Clearly show the working steps of your proposed iterative bottom-up algorithm (above) in the given example strings, $X=[a b c b d a b]$ and $Y=[b d c a b a]$.

Solution-(i):

Let us denote the length of SCS of two strings, $X=\left[x_{1} x_{2} \ldots x_{n}\right]$ (having length n) and $Y=\left[y_{1} y_{2} \ldots y_{m}\right]$ (having length m), as $L[n][m]$. Therefore, we can recursively define the length of SCS as -

$$
L[n][m]= \begin{cases}n, & \text { if } n \geq 0 \text { and } m=0 \\ m, & \text { if } n=0 \text { and } m \geq 0 \\ L[n-1][m-1]+1, & \text { if } m, n>0 \text { and } x_{n}=y_{m} \\ \operatorname{MINIMUM}\{L[n-1][m], L[n][m-1]\}+1, & \text { if } m, n>0 \text { and } x_{n} \neq y_{m}\end{cases}
$$

Solution-(ii):

$\underline{\text { Recursive Algorithm: }}$

```
length = SCS_length (X[], n, Y[], m)
{
    if (m == 0) return n.
    if (n == 0) return m.
    if (X[n-1] == Y[m-1]), then return 1 + SCS_length (X[], n-1, Y[], m-1).
    else, return 1 + MINIMUM { SCS_length (X[], n-1, Y[], m),
                                SCS_length (X[], n, Y[], m-1) }.
}
```

Time-Complexity:
The performance of the recursive algorithm above is exponential in nature with respect to n and m. We prove by induction on n, m that $T(n, m) \leq\binom{ n+m-1}{m}-c$. The result holds for $n=0$ or $m=0$ [induction basis]. If both n and m are positive, we make two recursive calls and the running time satisfies the recurrence,

$$
\begin{aligned}
T(n, m) & =T(n-1, m)+T(n, m-1)+c \\
& \leq\left[\binom{n+m-2}{m}-c\right)+\left(\binom{n+m-2}{m-1}-c\right]+c \\
& =\left[\binom{n+m-2}{m}+\binom{n+m-2}{m-1}\right]-c=\binom{n+m-1}{m}-c
\end{aligned}
$$

Since c is a constant, we obtain: $T(n, m)=O\left[\binom{n+m-1}{m}\right]$.
Similarly, if we choose $T(n, m) \leq\binom{ n+m-1}{n}-c$ as our induction hypothesis, we get: $\left.T(n, m)=O\left[\begin{array}{c}n+m-1 \\ n\end{array}\right)\right]$. Considering both of these cases, we may conclude that, $T(n, m)=O\left(2^{\min (n, m)}\right)$.

Solution-(iii):

Memoized Top-down Algorithm:
We use additional table, LEN[][], of $n \times m$ dimension (initialized with all INVALID entries), where $\langle i, j\rangle$-th entry in LEN stores the length $L[i][j]$ of SCS already computed recursively once. We may use this to look-up when there is again a need for the same value, thereby not solving the overlapping sub-problems repeatedly.

```
length = SCS_length_memoize (X[], n, Y[], m, LEN[][])
{
    if (m == 0) return n.
    if (n == 0) return m.
    if (X[n-1] == Y[m-1]), then
        if (LEN[n-1[m-1] is INVALID), then
        LEN[n-1[m-1] = SCS_length_memoize (X[], n-1, Y[], m-1).
        return 1 + LEN[n-1[m-1].
    else, do:
        if (LEN[n-1][m] is INVALID), then
        LEN[n-1][m] = SCS_length_memoize (X[], n-1, Y[], m).
        if (LEN[n][m-1] is INVALID), then
        LEN[n][m-1] = SCS_length_memoize (X[], n, Y[], m-1).
        return 1 + MINIMUM { LEN[n-1][m], LEN[n][m-1] }.
}
```


Solution-(iv):

Iterative Bottom-up Algorithm:

```
length = SCS_length_iterative (X[], n, Y[], m)
{
    Initialize LEN[n+1][m+1].
    loop for i = 0 to n, do:
        loop for j = 0 to m, do:
            if (j == 0), then LEN[i][j] = i.
            else if (i == 0), then LEN[i][j] = j.
            else if (X[i-1] == Y[j-1]), then LEN[i][j] = 1 + LEN[i-1][j-1].
            else, LEN[i][j] = 1 + MINIMUM { LEN[i-1][j], LEN[i][j-1]) }.
    return LEN[n][m];
}
```


Time-Complexity:

There are two nested loops running a total of $n m$ iterations and inside the innermost loop, only constanttime (say, c) operations are being carried out in worst-case. Also, there are constant-time (say, b) operations performed outside the loop. So, the overall time-complexity is formally given as,

$$
T(n, m)=b+\sum_{0}^{n} \sum_{0}^{m} c=b+\sum_{0}^{n} c m=b+c n m=O(n m)
$$

Space-Complexity:
Apart from the two input strings used (having $O(n+m)$ space in total) inside the algorithm, we also declare additional space of size $d .(n+1) .(m+1)$ for keeping LEN[][] (assuming each data takes d units of storage space). Also, there are only constant variable spaces (say, a) being used. So, the overall space-complexity is formally given as,

$$
S(n, m)=a+d(n+1)(m+1)=O(n m)
$$

Solution-(v):

Example:

Therefore, the length of SCS = LEN[7][6] = 9

Therefore, the SCS string $=$ SCS_STR[7][6] $=[\mathrm{a} b \mathrm{c}$ b d c a b a]

