ALL-PAIRS SHORTEST PATH IN A GRAPH

Aritra Hazra & Partha P Chakrabarti

Indian Institute of Technology Kharagpur

Approaches to All-Pair Shortest Paths

Problem: Given a weighted directed Graph G = (V, E), find
the shortest (cost) path between all pairs of vertices in G.

Case 1: For Directed Acyclic Graphs (DAGS), the recursive
algorithm discussed earlier can be extended by computing
the all-pair paths at every node during the recursion.

Case 2: For Graphs with positive edge costs, we can adapt
the single source algorithm to continue to find the shortest
path from s to all nodes (continue till OrQ is empty). We now
repeat that for all nodes as source nodes.

Case 3: For Graphs which may have negative edges but no
negative edge cycles. We will discuss two methods, namely,
Matrix Multiplication based method and the Floyd-Warshall
Algorithm

Case 4: For graphs which may also have negative edge
cycles, we will discuss the Bellman Ford Algorithm

Modifying Shortest Cost Path Algorithm for DAGs

visited [i] indicates if node i is visited. / initially 0 /
cost[i] = cost of path from i to g, initially infinity
succ(i) = {set of nodes to which node i is connected}
DFSP(node,g) {
local variable value = «;
visited[node] = 1;
if (node == g) { cost[node] = 0; return 0},
for each n in succ(node) do {
if (visited [n] == 0) DFSP(n);
value = min (value, (cost[n] + C[node,n]))

}

cost[node] = value;
return cost[node];
}
Time Complexity O(|V| + |E|)
Will not work for Graphs which have cycles.
Works for negative edge cost DAGSs.

Can be adapted to all pairs shortest paths for DAGs
(Exercise).

Modifying the Best First Search Algorlthm

G = (V,E) [Assume positive edge costs/
visited]i] all initialized to 0
cost[j] cost from s to j, all initialized to «
Ordered Queue OrQ initially {}
BFSW(s,g) {
cost [s] =0; OrQ ={s};
While OrQ !'= NULL {
] = Remove_Min (OrQ); visited[j] =
if (j == g) terminate with solution cost[j];
Foreach kinsucc (j) {
If (visited[k] == 0) {
if (cost[k] > (cost[j] + C[j,k])) {
cost[K] = cost[j] + CJj,K];
Insert_Reorder(OrQ,k);}

}

1}
If OrQ is empty terminate (“No Solution”);

} I This method is called Dijkstra’s Algorithm /

. Queue OrQ with node costs

1

2

3

4

ey

e

{1[01}

{4[1], 2(2]}

{2121, 3[3], 5[3], 7[5, 6[9T}
{3(31, 531, 7[5], 6[9]}
{5(3], 7[5, 6[8]}
{7[5].6[8])

{6[e1}

Node
Removed

1[0]
411]
212]
3[3]
53]
7[5]
6 [6]

Whenever a node is removed
from OrQ, the best cost path
to that node has been
obtained. (Detailed proof is
left as exercise)

Complexity is O(|E| log |E]|),
that is, O(|E| log |V]|) using
MinHeap or Balanced Tree.
May also be implemented by
an array in O(|V[? + |E|)

Bellman Ford Algorithm

visited [i] indicates if node i is visited. / initially 0 / s =Node 1
cost[i] = cost of path from i to g, initially infinity
succ(i) = {set of nodes to which node i is connected}
Parent[i] are parent pointers of shortest path, initialized to NULL
Bellman Ford(s) {
cost[s] = 0;
Fori=1to|V|-1{
For each edge (n,k) in E {
if (cost[K] > (cost[n] + C[n,k])) {

cost[n] = cost[n] + C[n,K];

Parent[k] =n };

1}
For each edge (n,k) in E {

if (cost[k] > cost[n] + C[n,k]) return (“Negative Cycle”)

return(“Success”)
Time Complexity O(lEl*lvl) from s to all other nodes. Example taken from the book “Introduction to
Works for negative edge cost graphs with negative edge loops. Algorithms” by Cormen, Leiserson, Rivest and Stein

For all-pairs, we run for each node as start node to get an O(|E| * |V/?)
Algorithm.

Matrix Multiplication Based Method

RECURSIVE DEFINITION:

D[i,J,0] =0 (if i =j), o (if i =)

D[i,j,k] = min { D[i,j,k-1], min { D[i,m,k-1] + C[m,j]}},
forallmin |V|

which is the same as: min { D[i,m,k-1] + C[m,j]}

since CJ[j,j] =0 for all j;

Final Solution is D[i,j,n-1] where n = |V]|

Analyzing the Recursive Definition we choose a
Dynamic Programming Strategy using two 2-
dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:

Bottom-up lterative Scheme:

Time Complexity O(|V|*) time

Matrix Multiplication Based Method: Example

D[0] D[1] D[2] D[3]
0 |0 || |=]|]|0 |3 |8 0 8 -4 -3 -4
© | 0 [0 | oo | oo o [0 | o 3 -4 7 -4 -1
= e @ e | e o |a |o oo 0 11 0 11
o | oo | oo |0 | oo 2 | |5 2 -5 -2 -5 -2
o | o0 | o0 | |0 oo | oo | oo 8 1 0 1 0

irample te}’ken from the bopk “Introdgction to . D[4]

gorithms” by Cormen, Leiserson, Rivest and Stein

-3 -4

RECURSIVE DEFINITION: -4 -1

D[1,,0] =0 (if i =j), = (if i I=j) 0

D[i,j,k] = min { D[i,},k-1], min { D[i,m,k-1] + C[m,j]}}, 5 2
for all min |V| 1

which is the same as: min { D[i,m,k-1] + C[m,j]}
since C[},j] =0;
Final Solution is D[i,j,n-1] where n = |V|

Improved Matrix Multiplication Based Method

RECURSIVE DEFINITION:
D[i,j,1] = 0 if (i==5))
= C[ijl it (it=))
D[i,j,2K] = min { D[i,m,Kk] + D[m,},k] },
forallmin |V|
Final Solution is D[i,},n-1] where n = |V|

Analyzing the Recursive Definition we choose a
Dynamic Programming Strategy using Two 2-
dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:

Bottom-up lterative Scheme:

Time Complexity O(|V|*log |V]) time

Improved Matrix Multiplication Based Method: Example

D[1] D[2] D[4]
0 3 8 oo 4 0 3 8 2 4 0 1 3 2 4
o |0 o (1 7 3 0 -4 1 7 3 0 4 1 1
oo | 4 0 oo | oo oo 4 0 5 11 7 4 0 5 3
2 oo 510 ©o 2 1 -5 0 2 2 1 5 0 2
o [o0 |0 |6 |0 8 |~ |1 |6 |0 8 |5 |1 |6 |0

Example taken from the book “Introduction to
Algorithms” by Cormen, Leiserson, Rivest and Stein

RECURSIVE DEFINITION:
D[i,j,1] = 0 if (i==j)
= Clijl i (it=))

DI[i,j,2K] = min { D[i,m,k] + D[m,j,k] }, for all min |V]|
Final Solution is D[i,},n-1] where n = |V|

Floyd Warshall Algorithm

Analyzing the Recursive Definition we choose a
Dynamic Programming Strategy using Two 2-
dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:

Bottom-up lterative Scheme:

RECURSIVE DEFINITION:

F[i,J,0] = 0 if (i==}), and = C[i,j] otherwise
F[i,J,k] = min { F[i,j,k-1], F[i,k,k-1] + F[k,j,k-1]}
Final Solution is F[i,j,n] where n = |V| Time Complexity O(|V[3) time

Floyd Warshall Algorithm:

nle

F[O] F[1] F[2] F[3]
0 3 8 oo 4 0 3 8 -4 3 8 4 -4 8 -4
o |0 o |1 7 o |0 oo 7 0 o |1 7 oo 7
o | 4 0 oo co co 4 0 oo 4 0 5 11 0 11
2 oo 5|0) 2 5 -5 -2 5 5 (0 -2 -5 -2
Example taken from the book “Introduction to Fl4] FI5]
Algorithms” by Cormen, Leiserson, Rivest and Stein 3 -1 -4 0 1 -3
0 -4 1 3 0 -4
RECURSIVE DEFINITION:
= = - - - - = - 4 o 3 7 4 0
F[i,},0] = 0 if (i==)) and = CJi,j] otherwise T | = > 1 (7 T2 1=
F[i,J,K] = min { F[i,},k-1], F[i,k,k-1] + F[k,},k-1]} 5 |1 o | [z 5 |2

Final Solution is F[i,j,n] where n = |V|

Summary: All-Pair Shortest Paths

Case 1: For Directed Acyclic Graphs (DAGS), the Recursive DFS Algorithm discussed earlier
can easily be extended by computing the all-pair paths at every node. O(|V|? + [V|*|E|)

Case 2: For Graphs with positive edge costs, we can adapt the single source Best First
Search (Dijkstra’s) Algorithm to continue to find the shortest path from s to all nodes
(Continue till OrQ is empty). We repeat that for all nodes as source nodes. O(|V|*(|E| log [V]))

Case 3: For Graphs which may have negative edges but no negative edge cycles. We
discussed two methods, namely,

Matrix Multiplication Based O(|V[®log |V|) and
Floyd-Warshall Algorithm O(|V|?)

Case 4: For graphs which may also have negative edge cycles, we discussed the Bellman
Ford Algorithm O(|E| * |V|?)

Thank you

	All-Pairs Shortest Path In A Graph
	Approaches to All-Pair Shortest Paths
	Modifying Shortest Cost Path Algorithm for DAGs
	Modifying the Best First Search Algorithm
	Bellman Ford Algorithm
	Matrix Multiplication Based Method
	Matrix Multiplication Based Method: Example
	Improved Matrix Multiplication Based Method
	Improved Matrix Multiplication Based Method: Example
	Floyd Warshall Algorithm
	Floyd Warshall Algorithm: Example
	Summary: All-Pair Shortest Paths
	Thank you

