ALL-PAIRS SHORTEST PATH IN A GRAPH



Aritra Hazra & Partha P Chakrabarti
Indian Institute of Technology Kharagpur

Approaches to All-Pair Shortest Paths

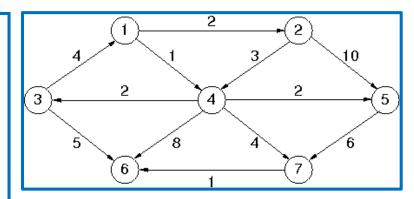
<u>Problem</u>: Given a weighted directed Graph G = (V, E), find the shortest (cost) path between all pairs of vertices in G.

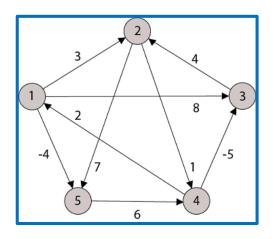
<u>Case 1</u>: For Directed Acyclic Graphs (DAGs), the recursive algorithm discussed earlier can be extended by computing the all-pair paths at every node during the recursion.

<u>Case 2</u>: For Graphs with positive edge costs, we can adapt the single source algorithm to continue to find the shortest path from s to all nodes (continue till OrQ is empty). We now repeat that for all nodes as source nodes.

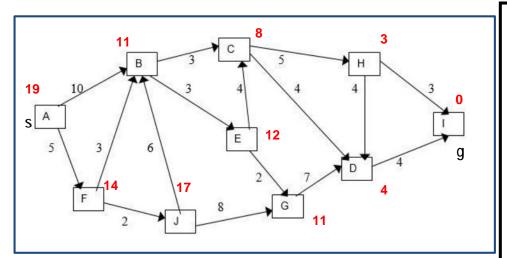
<u>Case 3</u>: For Graphs which may have negative edges but no negative edge cycles. We will discuss two methods, namely, Matrix Multiplication based method and the Floyd-Warshall Algorithm

<u>Case 4</u>: For graphs which may also have negative edge cycles, we will discuss the Bellman Ford Algorithm





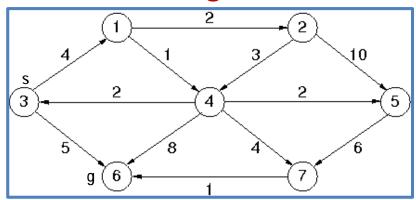
Modifying Shortest Cost Path Algorithm for DAGs



```
visited [i] indicates if node i is visited. / initially 0 /
cost[i] = cost of path from i to g, initially infinity
succ(i) = {set of nodes to which node i is connected}
DFSP(node,q) {
  local variable value = ∞;
  visited[node] = 1;
  if (node == g) \{ cost[node] = 0; return 0 \};
  for each n in succ(node) do {
     if (visited [n] == 0) DFSP(n);
     value = min (value, (cost[n] + C[node,n]))
   cost[node] = value;
   return cost[node];
Time Complexity O(|V| + |E|)
Will not work for Graphs which have cycles.
Works for negative edge cost DAGs.
Can be adapted to all pairs shortest paths for DAGs
(Exercise).
```

Modifying the Best First Search Algorithm

```
G = (V,E) / Assume positive edge costs/
visited[i] all initialized to 0
cost[j] cost from s to j, all initialized to ∞
Ordered Queue OrQ initially {}
BFSW(s,q) {
cost[s] = 0; OrQ = \{s\};
While OrQ != NULL {
   j = Remove_Min (OrQ); visited[j] = 1;
  if (j == q) terminate with solution cost[j];
  For each k in succ (j) {
  If (visited[k] == 0) {
         if (cost[k] > (cost[j] + C[j,k])) {
                    cost[k] = cost[j] + C[j,k];
                    Insert_Reorder(OrQ,k);}
If OrQ is empty terminate ("No Solution");
} / This method is called Dijkstra's Algorithm /
```



	Queue OrQ with node costs	Node Removed
1	{1[0]}	1 [0]
2	{4[1], 2[2]}	4 [1]
3	{2[2], 3[3], 5[3], 7[5], 6[9]}	2 [2]
4	{3[3], 5[3], 7[5], 6[9]}	3 [3]
5	{5[3], 7[5], <mark>6[8]</mark> }	5 [3]
6	{7[5],6[8])	7[5]
7	{6[6]}	6 [6]

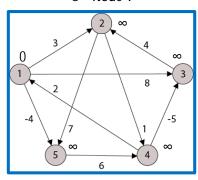
Whenever a node is removed from OrQ, the best cost path to that node has been obtained. (Detailed proof is left as exercise)

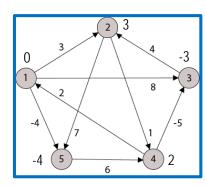
Complexity is $O(|E| \log |E|)$, that is, $O(|E| \log |V|)$ using MinHeap or Balanced Tree. May also be implemented by an array in $O(|V|^2 + |E|)$

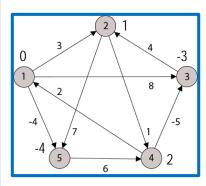
Bellman Ford Algorithm

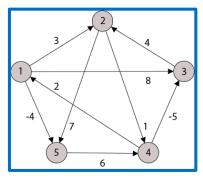
```
visited [i] indicates if node i is visited. / initially 0 /
cost[i] = cost of path from i to q, initially infinity
succ(i) = {set of nodes to which node i is connected}
Parent[i] are parent pointers of shortest path, initialized to NULL
Bellman Ford(s) {
cost[s] = 0;
For i = 1 to |V| - 1
For each edge (n,k) in E {
            if (cost[k] > (cost[n] + C[n,k])) {
                    cost[n] = cost[n] + C[n,k];
                     Parent[k] =n };
For each edge (n,k) in E {
     if (cost[k] > cost[n] + C[n,k]) return ("Negative Cycle")
return("Success")
Time Complexity O(|E|^*|V|) from s to all other nodes.
Works for negative edge cost graphs with negative edge loops.
For all-pairs, we run for each node as start node to get an O(|E| * |V|^2)
Algorithm.
```

s = Node 1



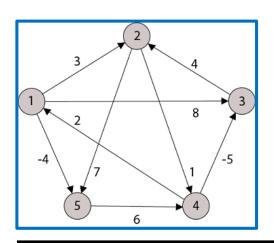






Example taken from the book "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein

Matrix Multiplication Based Method



RECURSIVE DEFINITION:

```
D[i,j,0] = 0 (if i = j), \infty (if i != j)
```

 $D[i,j,k] = min \{ D[i,j,k-1], min \{ D[i,m,k-1] + C[m,j] \} \},$ for all m in |V|

which is the same as: $min \{ D[i,m,k-1] + C[m,j] \}$ since C[j,j] = 0 for all j;

Final Solution is D[i,j,n-1] where n = |V|

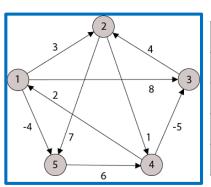
Analyzing the Recursive Definition we choose a Dynamic Programming Strategy using two 2-dimensional arrays D[n,n] for Memoization:

Bottom-up Iterative Scheme:

Top Down Recursive Scheme:

Time Complexity O(|V|4) time

Matrix Multiplication Based Method: Example



	D[0]				
0	8	∞	8	8	
∞	0	8	8	8	
∞	8	0	8	8	
∞	8	8	0	8	
∞	8	8	8	0	

	D[1]					
0	3	8	8	-4		
∞	0	8	1	7		
8	4	0	8	8		
2	8	-5	0	8		
∞	8	8	6	0		

D[2]					
0	3	8	2	-4	
3	0	-4	1	7	
∞	4	0	5	11	
2	-1	-5	0	-2	
8	∞	1	6	0	

ս[3]					
0	3	-3	2	-4	
3	0	-4	1	-1	
7	4	0	5	11	
2	-1	-5	0	-2	
8	5	1	6	0	

DL31

Example taken from the book "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein

RECURSIVE DEFINITION:

$$D[i,j,0] = 0 \text{ (if } i = j), \infty \text{ (if } i != j)$$

$$D[i,j,k] = min \{ D[i,j,k-1], min \{ D[i,m,k-1] + C[m,j] \} \},$$

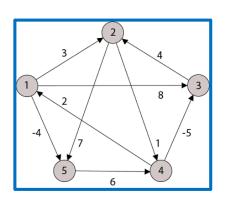
for all m in |V|

which is the same as: min { D[i,m,k-1] + C[m,j]} since C[j,j] = 0;

Final Solution is D[i,j,n-1] where n = |V|

0	1	-3	2	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

Improved Matrix Multiplication Based Method



RECURSIVE DEFINITION:

$$D[i,j,1] = 0 \text{ if } (i==j)$$

= $C[i,j] \text{ if } (i!=j)$

 $D[i,j,2k] = min \{ D[i,m,k] + D[m,j,k] \},$ for all m in |V|

Final Solution is D[i,j,n-1] where n = |V|

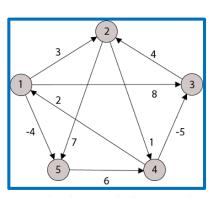
Analyzing the Recursive Definition we choose a Dynamic Programming Strategy using Two 2-dimensional arrays D[n,n] for Memoization:

Bottom-up Iterative Scheme:

Top Down Recursive Scheme:

Time Complexity $O(|V|^3 \log |V|)$ time

Improved Matrix Multiplication Based Method: Example



	D[1]					
0	3	8	8	-4		
∞	0	8	1	7		
∞	4	0	8	8		
2	8	-5	0	8		
∞	∞	∞	6	0		

	2[-]				
0	3	8	2	-4	
3	0	-4	1	7	
8	4	0	5	11	
2	-1	-5	0	-2	
8	∞	1	6	0	

D[2]

		ניו		
0	1	-3	2	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

D[4]

Example taken from the book "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein

RECURSIVE DEFINITION:

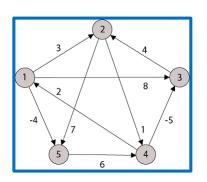
$$D[i,j,1] = 0 \text{ if } (i==j)$$

= $C[i,j] \text{ if } (i!=j)$

$$D[i,j,2k] = min \{ D[i,m,k] + D[m,j,k] \}, for all m in |V|$$

Final Solution is D[i,j,n-1] where n = |V|

Floyd Warshall Algorithm



Analyzing the Recursive Definition we choose a Dynamic Programming Strategy using Two 2-dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:

Bottom-up Iterative Scheme:

RECURSIVE DEFINITION:

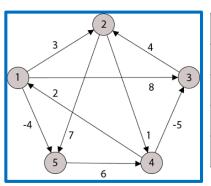
F[i,j,0] = 0 if (i==j), and = C[i,j] otherwise

 $F[i,j,k] = min \{ F[i,j,k-1], F[i,k,k-1] + F[k,j,k-1] \}$

Final Solution is F[i,j,n] where n = |V|

Time Complexity $O(|V|^3)$ time

Floyd Warshall Algorithm: Example



	F[0]				
0	3	8	8	-4	
∞	0	8	1	7	
∞	4	0	8	8	
2	∞	-5	0	8	
∞	8	8	6	0	

	F[1]				
0	3	8	8	-4	
∞	0	8	1	7	
∞	4	0	∞	8	
2	5	-5	0	-2	
∞	8	8	6	0	

F[2]				
0	3	8	4	-4
8	0	∞	1	7
∞	4	0	5	11
2	5	-5	0	-2
8	8	∞	6	0

F[3]				
0	3	8	4	-4
∞	0	8	1	7
∞	4	0	5	11
2	-1	-5	0	-2
∞	8	8	6	0

Example taken from the book "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein

RECURSIVE DEFINITION:

F[i,j,0] = 0 if (i==j) and = C[i,j] otherwise

 $F[i,j,k] = min \{ F[i,j,k-1], F[i,k,k-1] + F[k,j,k-1] \}$

Final Solution is F[i,j,n] where n = |V|

F[4]				
0	3	-1	4	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

ւ[၁]				
0	1	-3	2	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

F[5]

Summary: All-Pair Shortest Paths

<u>Case 1</u>: For Directed Acyclic Graphs (DAGs), the Recursive DFS Algorithm discussed earlier can easily be extended by computing the all-pair paths at every node. $O(|V|^2 + |V|^*|E|)$

<u>Case 2</u>: For Graphs with positive edge costs, we can adapt the single source <u>Best First Search (Dijkstra's)</u> Algorithm to continue to find the shortest path from s to all nodes (Continue till OrQ is empty). We repeat that for all nodes as source nodes. O(|V|*(|E| log |V|))

<u>Case 3</u>: For Graphs which may have negative edges but no negative edge cycles. We discussed two methods, namely,

Matrix Multiplication Based O(|V|³ log |V|) and Floyd-Warshall Algorithm O(|V|³)

Case 4: For graphs which may also have negative edge cycles, we discussed the Bellman Ford Algorithm O(|E| * |V|²)

Thank you