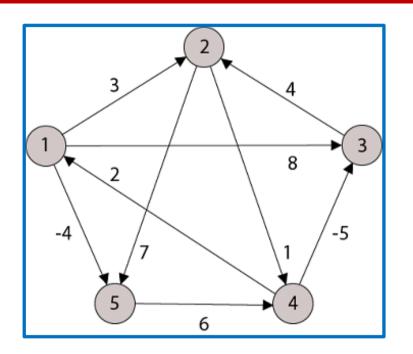
ALL-PAIRS SHORTEST PATH IN A GRAPH



Aritra Hazra & Partha P Chakrabarti

Indian Institute of Technology Kharagpur

Approaches to All-Pair Shortest Paths

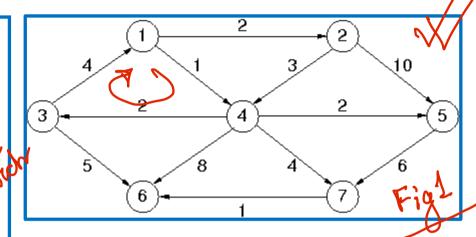
<u>Problem</u>: Given a weighted directed Graph G = (V, E), find the shortest (cost) path between all pairs of vertices in G.

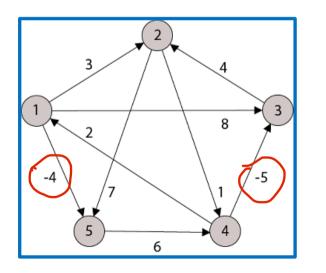
Case 1: For Directed Acyclic Graphs (DAGs), the recursive algorithm discussed earlier can be extended by computing the all-pair paths at every node during the recursion.

Case 2: For Graphs with positive edge costs, we can adapt the single source algorithm to continue to find the shortest path from s to all nodes (continue till OrQ is empty). We now repeat that for all nodes as source nodes.

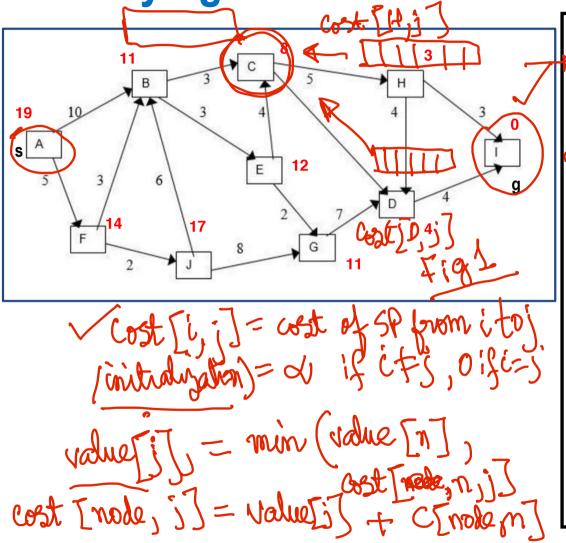
Case 3: For Graphs which may have negative edges but no negative edge cycles. We will discuss two methods, namely, Matrix Multiplication based method and the Floyd-Warshall Algorithm

<u>Case 4</u>: For graphs which may also have negative edge cycles, we will discuss the Bellman Ford Algorithm





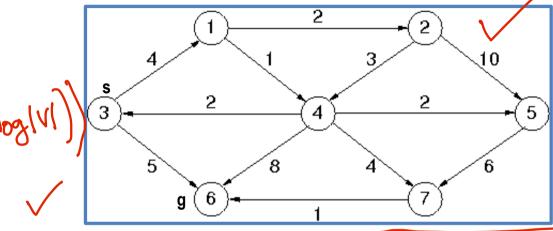
Modifying Shortest Cost Path Algorithm for DAGs



```
visited [i] indicates if node i is visited. / initially 0
cost[i] = cost of path from ito initially infinity
succ(i) = {set of nodes to which node i is connected}
DFSP(node,g) {
  local variable value = ∞;
  visited[node] = 1;
  if (node == g) { cost[node] = 0; return 0};
  for each n in succ(node) do {
     if (visited [n] == 0) DFSP(n);
     value = min (value, (cost[n] + C[node,n])
   cost[node] = value;
   return cost[node]; ~
Time Complexity O(|V| + |E|)
Will not work for Graphs which have cycles.
Works for negative edge cost DAGs.
Can be adapted to all pairs shortest paths for DAGs
(Exercise).
```

Modifying the Best First Search Algorithm

```
G = (V,E) / Assume positive edge costs/
visited[i] all initialized to 0
cost[j] cost from (s) to (1) all initialized to ∞
Ordered Queue OrQ initially {}
BFSW(s,g) {
cost[s] = 0(OrQ = {s})
 While OrQ != NULL {
   j = Remove_Min (OrQ); visited[j] = 1;
  if (j == g) terminate with solution cost[i]:
  For each k in succ (i) {
  If (visited[k] == 0) {
         if (cost[k] > (cost[j] + C[j,k])) {
                \simcost[k] = cost[j] + C[j,k];
                    Insert_Reorder(OrQ,k);}
If OrQ is empty terminate ("No Solution")
} / This method is called Dijkstra's Algorithm /
```



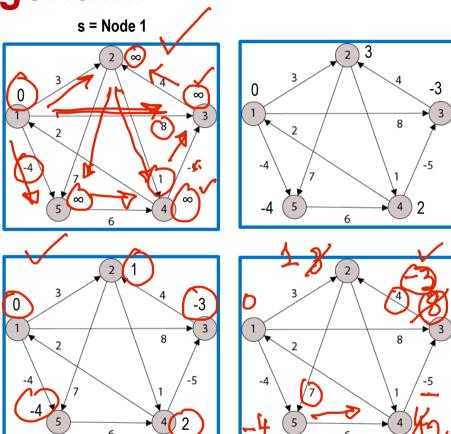
	Queue OrQ with node costs	Node Removed
1	{1[0]} v	1[0] 🗸 📗
2	{4[1], 2[2]}	4[1]
3	{2[2], 3[3], 5[3], 7[5], 6[9]}	2 [2]
4	{3[3], 5[3], 7[5], 6[9]}	3 [3]
5	{5[3], 7[5], <mark>6[8]</mark> }	5 [3]
6	{7[5],6[8]) ✓	7[5]
7	{6[6]} ✓	6 [6]

Whenever a node is removed from OrQ, the best cost path to that node has been obtained. (Detailed proof is left as exercise)

Complexity is O(|E| log |E|); that is, O(|E| log |V|) using MinHeap or Balanced Tree. May also be implemented by an array in O(|V|² + |E|)

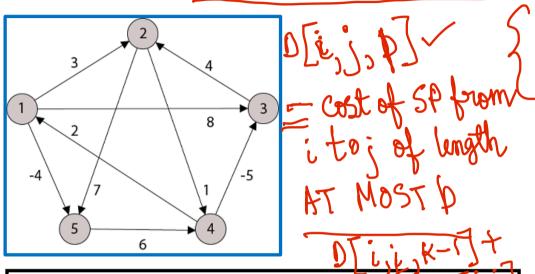
Bellman Ford Algorithm

```
visited [i] indicates if node i is visited. / initially 0 /
cost[i] = cost of path from i to g, initially infinity
succ(i) = {set of nodes to which node i is connected}
Parent[i] are parent pointers of shortest path, initialized to NULL
Bellman Ford(s) {
cost[s] = 0: V
For i = 1 to |V| - 1 {
For each edge (n,k) in E {
             if (cost[k] > (cost[n] + C[n,k])) {
                     cost[n] = cost[n] + C[n,k];
                     Parent[k] =n };
For each edge (n,k) in E {
     if (cost[k] > cost[n] + C[n,k]) return ("Negative Cycle")
 return("Success")
Time Complexity O(|E|^*|V|) from s to all other nodes.
Works for negative edge cost graphs with negative edge loops.
For all-pairs, we run for each node as start node to get an O(|E| * |V|
Algorithm.
```



Example taken from the book "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein

Matrix Multiplication Based Method



RECURSIVE DEFINITION:

$$D[i,j,0] = 0 \text{ (if } i = j), \bigcirc \text{ (if } i != j)$$

which is the same as: $min \{ D[i,m,k-1] + C[m,j] \}$ since C[j,j] = 0 for all j;

Final Solution is D[i,j,n-1] where n = |V|

Analyzing the Recursive Definition we choose a Dynamic Programming Strategy using two 2-dimensional arrays D[n,n] for Memoization

Top Down Recursive Scheme:

$$D[i,j,k] = done(t)$$

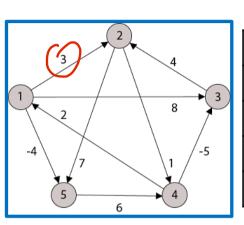
not done(-1)

Bottom-up Iterative Scheme:

Time Complexity O(|V|4) time

Matrix Multiplication Based Method: Example

D[1] 🗸



נטןט					
0	8	8	8	8	
8	0	8	8	8	
8	8	0	8	8	
∞	8	8	0	8	
8	8	8	8	0	

<u> </u>						
0	3	8	8	-4		
®	(0)	8	1	7		
8	4	0	8	8		
2	8	-5	0	8		
8	∞	8	6	0		

_	D[2] *					
	0	3	8	2	-4	
1	3	0	-4	1	7	
	8	4	0	5	11	
	2	-1	-5	0	-2	
	8	8	1	6	0	

_			սլაյ		
	0	3	-3	2	-4
	3	0	-4	1	-1
	7	4	0	5	11
	2	-1	-5	0	-2
	8	5	1	6	0

Example taken from the book "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein

RECURSIVE DEFINITION:

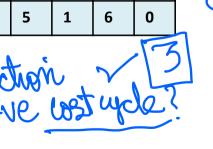
D[i,j,0] = 0 (if i = j), ∞ (if i != j)

 $D[i,j,k] = min \{ D[i,j,k-1], min \{ D[i,m,k-1] + C[m,j] \} \},$ for all m in |V|

which is the same as: min { D[i,m,k-1] + C[m,j]} since C[j,j] = 0;

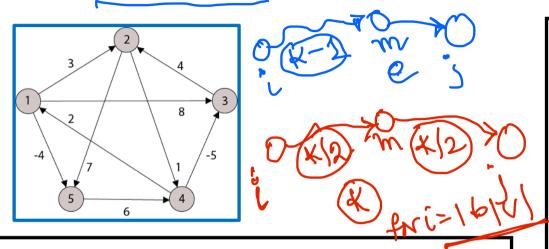
Final Solution is D[i,j(n-1)] where n = |V|

✓		D[4]	\	
0	1	-3	2	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0



$D[2,1,2]$ = $D[2,1,1]+C[1,1] \propto$
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
このよくし十つコント
りなんかけかり
70[2,5,1]+0[3,1]

Improved Matrix Multiplication Based Method



Analyzing the Recursive Definition we choose a Dynamic Programming Strategy using Two 2-dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:

$$D[i,j,1] = 0 \text{ if } (i==j)$$

$$D[i,j,2k] = min \{ D[i,m(k) + D[m,j(k))\},$$

for all m in |V|

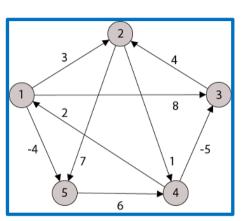
Final Solution is D[i,j,n-1] where n = |V|

Bottom-up Iterative Scheme:

for the = 1 to 10g/V/4

Time Complexity O(|V|³ log |V|) time

Improved Matrix Multiplication Based Method: Example



נון 🗸					
0	3	8	8	-4	
8	0	8	1	7	
8	4	0	8	8	
2	8	-5	0	8	
8	8	8	6	0	

0	3	8	2	-4
3	0	-4	1	7
~	4	0	5	11
2	-1	-5	0	-2
8	∞	1	6	0

0	1	-3	2	-4	
3	0	-4	1	-1	
7	4	0	5	3	
2	-1	-5	0	-2	
8	5	1	6	0	

Example taken from the book "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein

RECURSIVE DEFINITION:

$$D[i,j,1] = 0/if (i==j)$$

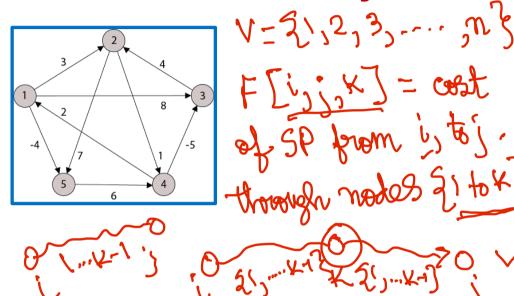
$$= C[i,j] \text{ if } (i!=j)$$

 $D[i,j(2k)] = min \{ D[i,m,k] + D[m,j,k] \}, for all m in |V|$

Final Solution is D[i,j,n-1] where n = |V|

DE 2567 DE 11 DE 25 DE 26 DE 2

Floyd Warshall Algorithm



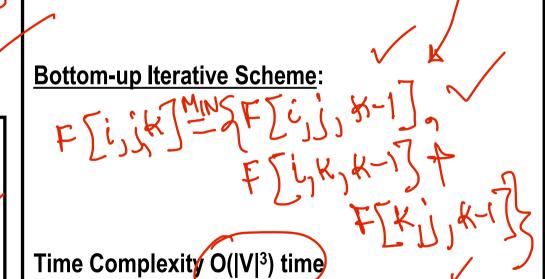
RECURSIVE DEFINITION:

 $F[i,j,k] \neq min \{ F[i,k-1] \} F[i,k,k-1] + F[k,j,k-1] \}$

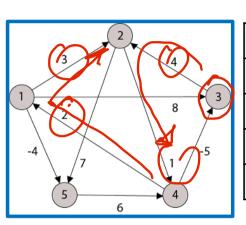
Final Solution is F[i,j,n] where n = |V|

Analyzing the Recursive Definition we choose a Dynamic Programming Strategy using Two 2-dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:



Floyd Warshall Algorithm: Example



F[0]					
0	3	8	8	-4	
∞	0	8	1	7	
∞	4	0	8	8	
2	8	-5	0	8	
8	8	8	6	0	

F[1] 🗸				
0	3	8	8	-4
∞	0	8	1	7
∞	4	0	8	8
2	5	-5	0	-2
∞	∞	8	6	0

· L-1					
0	3	8	4	-4	
8	0	∞	1	7	
8	4	0	5	11	
2	5	-5	0	-2	
8	8	8	6	0	

F[3]				
0	3	8	4	-4
∞	0	8	1	7
∞	4	0	5	11
2	-1	-5	0	-2
∞	8	∞	6	0

Example taken from the book "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein

RECURSIVE DEFINITION:

F[i,j,0] = 0 if (i==j) and = C[i,j] otherwise \vee

 $F[i,j,k] = min \{ F[i,j,k-1], F[i,k,k-1] + F[k,j,k-1] \}$

Final Solution is F[i,j,n] where n = |V|

0	3	-1	4	-4	
3	0	-4	1	-1	
7	4	0	5	3	
2	-1	-5	0	-2	
8	5	1	6	0	

F[4] 💙

, [o]				
0	1	-3	2	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

F[5] \

F[ijsk] = cost of min costpath

Summary: All-Pair Shortest Paths

<u>Case 1</u>: For Directed Acyclic Graphs (DAGs), the <u>Recursive DFS Algorithm</u> discussed earlier can easily be extended by computing the all-pair paths at every node. $O(|V|^2 + |V|^*|E|)$

Case 2: For Graphs with positive edge costs, we can adapt the single source Best First Search (Dijkstra's) Algorithm to continue to find the shortest path from s to all nodes (Continue till OrQ is empty). We repeat that for all nodes as source nodes. O(|V|*(|E| log |V|))

<u>Case 3</u>: For Graphs which may have negative edges but no negative edge cycles. We discussed two methods, namely,

Matrix Multiplication Based O(|V|³ log |V|) and Floyd-Warshall Algorithm O(|V|³)

<u>Case 4</u>: For graphs which may also have negative edge cycles, we discussed the Bellman Ford Algorithm $O(|E| * |V|^2)$

Thank you