
SHORTEST PATH IN A GRAPH

Aritra Hazra & Partha P Chakrabarti
Indian Institute of Technology Kharagpur

Shortest Path in a Graph
Problem: Given a directed Graph G = (V, E), and two
nodes, s and g in V, find a shortest (cost) path from s
to g in V.
In unweighted graphs edge cost is 1. Thus shortest
path is the path length.
In Fig 1, if s =A, g = G, Shortest Path = {A, B, D,G}
and Cost = Length is 3.
The cost of a path is measured in terms of the sum
of the edge costs of the path from s to g.
In Fig 2, if s=1, g=6, Shortest Cost Path = {1,4,7,6}
where Length is 3 and cost is 6. There is a shorter
length path {1,4,6} but of higher cost (9).
For undirected graphs, we replace an undirected
edge e = (m,n) by two directed edges e1 = (m,n) and
e2 = (n,m) of the same weight as e to get a directed
graph.
The graph may have cycles or may be a Directed
Acyclic Graph (DAG)

Fig 1

Fig 2

Global Data: G = (V,E)
visited [i] indicates if node i is visited. / initially 0 /
Parent[i] = parent of a node in the Search / initially NULL /
succ(i) = {set of nodes to which node i is connected}
PathDfs(s,g) {

visited[s] = 1;
if (s == g) return with path through parent links;
for each n in succ(s) do

if (visited [n] == 0)
{ Parent[n] = s;

PathDfs(n,g) }

}

Time Complexity O(|V| + |E|)
// The first solution in DFS may not be the shortest path.
If you wish to find the shortest path using DFS then you
may need to backtrack and handle loops in the graph
(Home Exercise) //

Depth-First Search
s

g

s

g

Breadth-First Search
visited[i] all initialized to 0;
Length[i] length from s to i, all initialized to 0;
Parent[i] = parent of i / initially Null/
Queue Q initially {}
BFS(s, g) {
visited [s] = 0; Q = {s};
While Q != NULL {

n = DeQueue (Q);
if (n== g) return with path through parent links;
visited [n] = 1;
For each k in succ (n)

if (visited[k]==0) && (k is not already in Q) {
parent[k] = n;
Length[k] = Length[n]+1;
EnQueue(Q,k); }

}
If Q is empty then return with failure (“No Path”);

}

Time Complexity O(|V| + |E|)

Step Queue Q Node
DeQueued
[Length]

1 {A} A [0]

2 {B} B [1]

3 {C,D,F} C [2]

4 {D,F,E,H} D [2]

5 {F,E,H,G} F [2]

6 {E,H,G} E [3]

7 {H,G,K} H [3]

8 {G,K} G [3]

Length[k] gives the length of
the shortest path from s to k.

When a goal node is removed
from the Queue Q, the
shortest length path to it is
found.

The Algorithm, will work in
case there are multiple nodes
which satisfy the goal
condition and we are to find a
path to any one of them

s

g

Shortest Paths Weighted Directed Graphs

Varieties of Shortest Path Problems:
Source-Goal Problem
Single Source – All Nodes Problem
All Pairs Shortest Paths

Types of Graphs:
Directed Acyclic Graphs (DAGs) [Fig 1]
General Graphs with positive edge costs [Fig 2]
General Graphs with no negative cost cycles [Fig 3]
Negative cost cycle [Fig 4]

Fig 1 Fig 2

Fig 3

Fig 4

Shortest Cost Path in DAGs

RECURSIVE DEFINITION:
SP(n,g) = 0 if n == g;

= ∞ (Infinity), if (n !=g) and succ(n) is NULL;
= min { SP(m,g) + C[n,m] } ,

for all m in succ(n),
if (n != g) and succ (n) is non-empty

visited [i] indicates if node i is visited. / initially 0 /
cost[i] = cost of path from i to g, initially infinity
succ(i) = {set of nodes to which node i is connected}
DFSP(node,g) {

local variable value = ∞;
visited[node] = 1;
if (node == g) { cost[node] = 0; return 0};
for each n in succ(node) do {

if (visited [n] == 0) DFSP(n);
value = min (value, (cost[n] + C[node,n]))
}

cost[node] = value;
return cost[node];

}
Time Complexity O(|V| + |E|)
Will not work for Graphs which have cycles.
Works for negative edge cost DAGs.
Can be adapted to all pairs shortest paths for DAGs
(Exercise).

0

3

4

8

11

12

11

1714

19

s

g

Best First Search in Weighted Directed Graphs
G = (V,E) / Assume positive edge costs/
visited[i] all initialized to 0
cost[j] cost from s to j, all initialized to ∞
Ordered Queue OrQ initially {}
BFSW(s,g) {
cost [s] = 0; OrQ = {s};
While OrQ != NULL {

j = Remove_Min (OrQ); visited[j] = 1;
if (j == g) terminate with solution cost[j];
For each k in succ (j) {
If (visited[k] == 0) {

if (cost[k] > (cost[j] + C[j,k])) {
cost[k] = cost[j] + C[j,k];
Insert_Reorder(OrQ,k);}

}
} }

If OrQ is empty terminate (“No Solution”);
} / This method is called Dijkstra’s Algorithm /

Queue OrQ with node costs Node
Removed

1 {1[0]} 1 [0]

2 {4[1], 2[2]} 4 [1]

3 {2[2], 3[3], 5[3], 7[5], 6[9]} 2 [2]

4 {3[3], 5[3], 7[5], 6[9]} 3 [3]

5 {5[3], 7[5], 6[8]} 5 [3]

6 {7[5],6[8]) 7[5]

7 {6[6]} 6 [6]

Whenever a node is removed
from OrQ, the best cost path
to that node has been
obtained. (Detailed proof is
left as exercise)

Complexity is O(|E| log |E|),
that is, O(|E| log |V|) using
MinHeap or Balanced Tree.
May also be implemented by
an array in O(|V|*|V| + |E|)

s

g

Thank you
Homework Exercise:
Algorithm for Shortest Path in a weighted Graph with
negative edge costs but no negative cycles

	Shortest Path In A Graph
	Shortest Path in a Graph
	
	Breadth-First Search
	Shortest Paths Weighted Directed Graphs
	Shortest Cost Path in DAGs
	Best First Search in Weighted Directed Graphs
	Thank you

