Minimum Spanning Trees

Aritra Hazra \& Partha P Chakrabarti Indian Institute of Technology Kharagpur

Spanning Tree of an Undirected Graph

Given a connected Undirected Graph $-=(V, E)$, a Spanning Tree is a connected sub-Tree of 6 covering every nodes of G

Each Spanning Tree $T=\left(V / E^{\prime}\right)$ consists of all the V vertices of G and E^{\prime} is a subset of (E) such that G remains connected by the edges of T. Thus E' will have |V|-1 edges.

Tree Edges of a basic DFS or BFS Traversal will generate a Spanning Tree.

A Graph G may have many Spanning Trees.
If $G=(V, E)$ is a graph of multiple separate connected components, then we have a Spanning Tree for every connected component and together it is called a Spanning Forest.

FIG

DFS based Spanning Tree Algorithm

Minimum Spanning Tree of a Weighted Undirected Graph

Given a connected Weighted Undirected Graph G = (V, E), a Minimum Spanning Tree (MST) is a Spanning Tree of G of Minimum Cost. cost $=$ Sum of edges of the
There may be multiple MSTs in a graph. However, if each edge of G has a distinct weight, then the MST is UNIQUE Applications:

- Design of various kinds of Networks (Circuits, Telecom, Transport, Water Supply, Power Grids, etc)
- Geometric / Vision / Image Processing Problems and Analysis
- Approximations of Complex Problems

$$
\text { Undirected graph } G=(V, E)
$$

Fig2

Algorithm for MST: Step 1 (Initial Recursive Definition)

MST(G1, G2,T) $\{\longrightarrow T$ as the MST of G1 If ($G 2==\{ \}$) return $<T, 0\rangle$ BASE
For each edge $\mathrm{e}=(\mathrm{n}, \mathrm{m})$ from $\mathbf{G 1}$ to $\mathbf{G 2}$, recursively find the minimum cost Tree (cost_a) using the remaining part of G2 and the corresponding T^{\prime} on selection of the edge e as a part of the MST
\{ $\mathbf{G 1 a}=\mathbf{G} 1+\{\mathrm{m}\} ;$

$$
\mathrm{G} 2 \mathrm{a}=\mathrm{G} 2-\{\mathrm{m}\}
$$

$\mathrm{Ta}=\mathrm{T}+\{\mathrm{e}\})$
<T', cost'> $=M S T(G 1 a, G 2 a, T a)$

$$
\text { cost_a }=C[n, m]+\text { cost }^{\prime}
$$

\}
Let <T_min, Cost_min $>$ be the minimum cost_a and corresponding T'found across all edges e Return <T_min, Cost_Min>

Algorithm for MST: Step 1A (Initial-Recursive Definition)

MST(G1, G2,T) \{

If ($G 2==\{ \}$) return $<T, 0>$
For each edge $\mathrm{e}=(\mathrm{n}, \mathrm{m})$ from $\mathbf{G 1}$ to G 2 , recursively find the minimum cost Tree (cost_a) using the remaining part of G2 and the corresponding T ' on selection of the edge e as a part of the MST
\{ G1a = G1 + \{m\};

$$
\text { G2a = G2 - \{m\} }
$$

$\mathrm{Ta}=\mathrm{T}+\{\mathrm{e}\}$
<T', cost'> = MST(G1a, G2a,Ta)
cost_a $=\mathrm{C}[\mathrm{n}, \mathrm{m}]+$ cost'
Let $\overbrace{\text { T_min }}^{\text {Cost_mins }}$ be the minimum cost_a and corresponding T^{\prime} found across all edges e

Return <T_min, Cost_Min>

Algorithm for MST: Step 1B (Initial Recursive Definition)

MST(G1, G2,T) \{
If ($G 2==\{ \}$) return $<T, 0>$
For each edge $\mathrm{e}=(\mathrm{n}, \mathrm{m})$ from $\mathbf{G 1}$ to $\mathbf{G 2}$, recursively find the minimum cost Tree (cost_a) using the remaining part of G2 and the corresponding T ' on selection of the edge e as a part of the MST

```
{ G1a=G1 + {m};
    G2a = G2 - {m}
    Ta = T + {e}
    <T', cost'> = MST(G1a, G2a,Ta)
    cost_a = C[n,m] + cost'
    }
```

Let <T_min, Cost_min> be the minimum cost_a and corresponding T^{\prime} found across all edges e Return <T_min, Cost_Min> $\}$

Algorithm for MST: Step 2 (Analyzing the Properties)

```
MST(G1, G2,T) {
If (G2 =={}) return <T,0>
For each edge \(\mathrm{e}=(\mathrm{n}, \mathrm{m})\) from G1 to G2, recursively find the minimum cost Tree (cost_a) using the remaining part of G2 and the corresponding T' on selection of the edge e as a part of the MST
\{ G1a \(=\mathrm{G} 1+\{\mathrm{m}\}\);
\[
\text { G2a = G2 - \{m\} }
\]
\[
\mathrm{Ta}=\mathrm{T}+\{\mathrm{e}\}
\]
\[
<T^{\prime}, \text { cost'> }=\text { MST(G1a, G2a,Ta) }
\]
\[
\text { cost_a }=C[n, m]+\text { cost }
\]
\}
Let <T_min, Cost_min> be the minimum cost_a and corresponding \(T\) ' found across all edges e
Return <T_min, Cost_Min>
```


Algorithm for MST: Step 3 (Making a Greedy Choice)

MST_Greedy (G1, G2,(T) \{
If (G2 ==\{\}) return <T,0>
From all edges $\mathrm{e}=(\mathrm{n}, \mathrm{m})$ from G 1 to G 2 (50) find the minimum cost edge $e^{\prime}=\left(n^{\prime}, m^{\prime}\right)$ from G1 to G 2 and do the following:
\{ G1a = G1 + \{ $\left.\mathrm{m}^{\prime}\right\} ;$

G2a $=\mathbf{G} 2-\left\{\mathrm{m}^{\prime}\right\}$
$\mathrm{Ta}=\mathrm{T}+\left\{\mathrm{e}^{\prime}\right\}$
<T',cost'> = MST_Greedy (G1a, G2a,Ta)
cost_a $=\mathrm{C}[\mathrm{n}, \mathrm{m}]+$ cost'

Return <T', cost_a>
\}

Algorithm for MST: Step 3 (Example)

MST_Greedy (G1, G2,T) \{
If (G2 ==\{\}) return <T,0>
From all edges $e=(n, m)$ from $G 1$ to $G 2$ do and find the minimum cost edge $e^{\prime}=\left(n^{\prime}, m^{\prime}\right)$ from G1 to G 2 and do the following:
\{ G1a = G1 + \{ $\left.\mathrm{m}^{\prime}\right\} ;$

G2a = G2 - \{m'\}
$\mathrm{Ta}=\mathrm{T}+\left\{\mathrm{e}^{\prime}\right\}$
<T' ,cost'> = MST_Greedy (G1a, G2a, Ta) cost _a $=\mathrm{C}[\mathrm{n}, \mathrm{m}]+$ cost'

Return <T', cost _a>
\}

Choose the one with mun cost

Algorithm for MST: Step 3 (Analysis)

MST_Greedy (G1, G2,T) \{ If (G2 ==\{\}) return <T,0> From all edges $\mathrm{e}=(\mathrm{n}, \mathrm{m})$ from G 1 to G 2 do and find the minimum cost edge $e^{\prime}=\left(n^{\prime}, m^{\prime}\right)$ from G1 to G2 and do the following:	
\{ G1a = G1 + \{m'\}; G2a $=\mathbf{G 2}-\left\{\mathrm{m}^{\prime}\right\}$ PRIM'S $\mathrm{Ta}=\mathrm{T}+\left\{\mathrm{e}^{\prime}\right\}$ Algrithom $\left\langle T^{\prime}\right.$, cost'> $=$ MST_Greedy (G1a, G2a, Ta) cost_a $=\mathrm{C}[\mathrm{n}, \mathrm{m}]+$ cost ${ }^{\prime}$	
$\begin{aligned} & \} \\ & \text { Return }\left\langle T^{\prime}, \text { cost_a> } \quad O(\|E\| \log \|V\|)\right. \\ & \} \end{aligned}$	$\text { O(E) Iogtt } \int \text { MCN }$

Kruskal's Algorithm for MST

Kruskal's Algorithm for MST (Example)

```
Kruskal (V,E) {
Sort the edges in E in increasing cost;
VT = {}; ET = {}; cost = 0;
While E is not empty or VT = V do {
Choose the next minimum cost edge e =
(n,m) in E;
E=E-{e}
If adding }\textrm{n},\textrm{m}\mathrm{ in VT and e in ET makes a
cycle, discard e, else {
    VT = VT + {n} +{m}
    ET = ET + { e}
    cost= cost+C[n,m]}
    }
Return <GT = (VT, ET), cost>
}
```


Kruskal's Algorithm for MST (Analysis)

```
Kruskal (V,E) {
Sort the edges in E in increasing cost;
VT = {}; ET = {}; cost = 0;
While E is not empty or VT = V do {
Choose the next minimum cost edge e =
(n,m) in E;
E=E-{e}
If adding }\textrm{n},\textrm{m}\mathrm{ in VT and e in ET makes a
cycle, discard e, else {
    VT = VT + {n} + {m}
    ET = ET + { e}
    cost= cost +C[n,m]}
    }
Return <GT = (VT, ET), cost>
}
```


Kruskal's Algorithm (using Disjoint UNION-FIND)

$O(|E| \log |v|)$

Thank you

