
TRAVERSAL OF DIRECTED GRAPHS

Aritra Hazra & Partha P Chakrabarti
Indian Institute of Technology Kharagpur

Directed Graphs
An Undirected Graph G = (V, E) consists of

the following:

• A set of Vertices or Nodes V

• A set of DIRECTED Edges E where each

edge connects two vertices of V. The

edge is an ORDERED pair of vertices

Successor Function: succ(i) = {set of nodes

to which node i is connected}

Directed Acyclic Graphs (DAGs): Such

Graphs have no cycles (Figure 2)

Weighted Undirected Graphs: Such Graphs

may have weights on edges (Figure 3). We

can also have Weighted DAGs

Figure 1

Figure 3Figure 2

Basic Traversal Algorithm (Depth First Search)

Global Data: G = (V,E)

visited [i] indicates if node i is visited. / initially 0 /

Parent[i] = parent of a node in the Search / initially
NULL /

succ(i) = {set of nodes to which node i is
connected}

Dfs(node) {

visited[node] = 1;

for each j in succ(node) do {

if (visited [j] ==0) { Parent[j] = node;

Dfs(j) }

}

}

Traversing the Complete Graph by DFS

Global Data: G = (V,E)

visited [i] indicates if node i is visited. / initially 0 /

Parent[i] = parent of a node in the Search / initially
NULL /

succ(i) = {set of nodes to which node i is
connected}

Dfs(node) {

visited[node] = 1;

for each j in succ(node) do {

if (visited [j] ==0) { Parent[j] = node;

Dfs(j) }

}

}

Global Data: G = (V,E)

visited [i] indicates if node i is visited. / initially 0 /

Parent[i] = parent of a node in the Search / initially
NULL /

Entry[i] = node entry sequence / initially 0 /

Exit[i] = node exit sequence / initially 0 /

succ(i) = {set of nodes to which node i is connected}

numb = 0;

Dfs(node) {

visited[node] = 1; numb = numb+1;

Entry[node] = numb;

for each j in succ(node) do

if (visited [j] ==0) { Parent[j] = node;

Dfs(j) }

numb = numb + 1;

Exit[node] = numb;

}

Entry-Exit Numbering

Global Data: G = (V,E)

visited [i] indicates if node i is visited. / initially 0 /

Parent[i] = parent of a node in the Search / initially NULL
/

Entry[i] = node entry sequence / initially 0 /

Exit[i] = node exit sequence / initially 0 /

succ(i) = {set of nodes to which node i is connected}
numb = 0;

Dfs(node) {

visited[node] = 1; numb = numb+1;

Entry[node] = numb;

for each j in succ(node) do

if (visited [j] ==0) { Parent[j] = node;

Dfs(j) }

numb = numb + 1;

Exit[node] = numb;

}

Tree Edge, Back Edge, Forward Edge, Cross Edge

Edge (u,v) is

Tree Edge or Forward Edge: if & only if

Entry[u] < Entry[v] < Exit[v] < Exit[u]

Back Edge: if & only if

Entry[v] < Entry [u] < Exit [u] < Exit [v]

Cross Edge: if & only if

Entry [v] < Exit [v] < Entry [u] < Exit [u]

Global Data: G = (V,E)

visited [i] indicates if node i is visited. / initially 0 /

Parent[i] = parent of a node in the Search / initially
NULL /

Entry[i] = node entry sequence / initially 0 /

Exit[i] = node exit sequence / initially 0 /

succ(i) = {set of nodes to which node i is connected}
numb = 0;

Dfs(node) {

visited[node] = 1; numb = numb+1;

Entry[node] = numb;

for each j in succ(node) do

if (visited [j] ==0) { Parent[j] = node;

Dfs(j) }

numb = numb + 1;

Exit[node] = numb;

}

Reachability, Paths, Cycles, Components

Edge (u,v) is

Tree Edge or Forward Edge: if & only if

Entry[u] < Entry[v] < Exit[v] < Exit[u]

Back Edge: if & only if

Entry[v] < Entry [u] < Exit [u] < Exit [v]

Cross Edge: if & only if

Entry [v] < Exit [v] < Entry [u] < Exit [u]

Global Data: G = (V,E)

visited [i] indicates if node i is visited. / initially 0 /

Parent[i] = parent of a node in the Search / initially
NULL /

Entry[i] = node entry sequence / initially 0 /

Exit[i] = node exit sequence / initially 0 /

succ(i) = {set of nodes to which node i is connected}
numb = 0;

Dfs(node) {

visited[node] = 1; numb = numb+1;

Entry[node] = numb;

for each j in succ(node) do

if (visited [j] ==0) { Parent[j] = node;

Dfs(j) }

numb = numb + 1;

Exit[node] = numb;

}

Directed Acyclic Graphs

Global Data: G = (V,E)

visited [i] indicates if node i is visited. / initially 0 /

Parent[i] = parent of a node in the Search / initially
NULL /

Entry[i] = node entry sequence / initially 0 /

Exit[i] = node exit sequence / initially 0 /

succ(i) = {set of nodes to which node i is connected}
numb = 0; numb1 = 0;

Dfs(node) {

visited[node] = 1; numb = numb+1;

Entry[node] = numb;

for each j in succ(node) do

if (visited [j] ==0) { Parent[j] = node;

Dfs(j) }

numb1 = numb1 + 1;

Exit[node] = numb1;

}

Topological Ordering, Level Values

Shortest Cost Path in Weighted DAGs

Breadth-First Search
Global Data: G = (V,E)

Visited[i] all initialized to 0

Queue Q initially {}

BFS(k) {

visited [k] = 0; Q = {k};

While Q != {} {

j = DeQueue (Q);

if visited[j] == 0 {

visited [j] = 1;

For each k in succ (j) {

if (visited[k]==0) EnQueue(Q,k); }

}

}

/Parent links, Shortest Length Path Finding in
unweighted directed graphs/

Pathfinding in Weighted Directed Graphs
Global Data: G = (V,E)

Visited[i] all initialized to 0,

Cost[j] all initialized to INFINITY

Ordered Queue Q initially {}

BFSW(k) {

visited [k] = 0; cost [k] = 0; Q = {k};

While Q != {} {

j = DeQueue (Q);

if visited[j] == 0 {

visited [j] = 1;

For each k in succ (j) {

if cost[k] > cost[j] + c[j,k]

cost[k] = cost[j] + c[j,k];

EnQueue(Q,k);}

}

}

Thank you

