TRAVERSAL OF DIRECTED GRAPHS

LA
4
¥ \\
HTN ./"_A// ~ 77N
(FY 8) (c)—o(H
\<‘\ ///\I’ J’/ ; ¥
(B) { E)
,;_—\) \\-":"./‘\\ < e
f \ Tl)
74 4 \\ "\.\u
4 “— b
: b .
(1)—e) (K

Aritra Hazra & Partha P Chakrabarti

Indian Institute of Technology Kharagpur

Directed Graphs

An Undirected Graph G = (V, E) consists of
the following:

* Aset of Vertices or Nodes V

« Aset of DIRECTED Edges E where each
edge connects two vertices of V. The
edge is an ORDERED pair of vertices

Successor Function: succ(i) = {set of nodes
to which node i is connected}

Directed Acyclic Graphs (DAGs): Such
Graphs have no cycles (Figure 2)

Weighted Undirected Graphs: Such Graphs
may have weights on edges (Figure 3). We
can also have Weighted DAGs

0
FY \ ®) {c) (1)
Y. A
(o) A
/\ e
i \ } -
(1)——6) (Y
Figure 1
2
VGD 4 7
5 2
! Y®
Weighted Graph
Figure 2 Figure 3

Basic Traversal Algorithm (Depth First Search)

Global Data: G = (V,E) (%)

visited [i] indicates if node i is visited. / initially 0 / Y

Parent[i] = parent of a node in the Search /initially | [(F)” Ys} L) ——(v)

NULL/ < I I

succ(i) = {set of nodes to which node i is T r W

connected}] . 10 N

Dfs(node) { V\ o
visited[node] = 1; (—=) Od

for each j in succ(node) do {
if (visited [j] ==0) { Parent[j] = node;
Dfs(j) }

Traversing the Complete Graph by DFS

Global Data: G = (V,E)
visited [i] indicates if node i is visited. / initially 0 /

Parent[i] = parent of a node in the Search / initially
NULL/

succ(i) = {set of nodes to which node i is
connected}

Dfs(node) {
visited[node] = 1;
for each j in succ(node) do {
if (visited [j] ==0) { Parent[j] = node;
Dfs(j) }

(a)
(F) b | ?5 iy
o r——)
— — kN
L1 —L 8 (kY

Entry-Exit Numbering

Global Data: G = (V,E)

visited [i] indicates if node i is visited. / initially 0 /
Parent[i] = parent of a node in the Search / initially

NULL/

Entry[i] = node entry sequence / initially 0 /
Exit[i] = node exit sequence [initially 0/
succ(i) = {set of nodes to which node i is connected}

numb = 0;
Dfs(node) {

visited[node] = 1; numb = numb+1;

Entry[node] = numb;
for each j in succ(node) do
if (visited [j] ==
Dfs(j) }
numb = numb +1;
Exit[node] = numb;

}

0) { Parent[j] =

(n)

— —~
(F/\’m

\‘_//I

/’M».

al

(j%—(g'f)

node;

Tree Edge, Back Edge, Forward Edge Cross Edge

Global Data: G = (V|E)

visited [i] indicates if node i is visited. / initially 0 /
Parent[i] = parent of a node in the Search / initially NULL
/

Entry[i] = node entry sequence / initially 0 /

Exit[i] = node exit sequence [initially 0 /

succ(i) = {set of nodes to which node i is connected}

numb = 0;
Dfs(node) {
visited[node] = 1; numb = numb+1;
Entry[node] = numb;
for each j in succ(node) do
if (visited [j] ==0) { Parent[j] = node;
Dfs(j) }
numb = numb +1;
Exit[node] = numb;

}

/'\\(

) \B,) >()—’KH,

\./ ‘v e I I
o ——AE)]
) \/\

/,

*H od

Edge (u,v) is

Tree Edge or Forward Edge: if & only if
Entry[u] < Entry[v] < Exit[v] < Exit[u]
Back Edge: if & only if

Entry[v] < Entry [u] < EXit [u] < EXit [V]
Cross Edge: if & only if

Entry [v] < EXit [v] < Entry [u] < EXit [u]

Reachability, Paths,

Global Data: G = (V|E)
visited [i] indicates if node i is visited. / initially 0 /

Parent[i] = parent of a node in the Search / initially
NULL/

Entry[i] = node entry sequence / initially 0 /
Exit[i] = node exit sequence [initially 0 /

succ(i) = {set of nodes to which node i is connected}
numb = 0;

Dfs(node) {
visited[node] = 1; numb = numb+1;
Entry[node] = numb;
for each j in succ(node) do
if (visited [j] ==0) { Parent[j] =
Dfs(j) }

node;

numb = numb +1;
Exit[node] = numb;

}

Cycles, Components

/'\)
] YB)

\, ’sp > Ji I
o ——AE)]
) \/\

/,

*H od

Edge (u,v) is

Tree Edge or Forward Edge: if & only if
Entry[u] < Entry[v] < Exit[v] < EXit[u]
Back Edge: if & only if

Entry[v] < Entry [u] < Exit [u] < EXit [V]
Cross Edge: if & only if

Entry [v] < EXit [v] < Entry [u] < EXit [u]

Directed Acyclic Graphs

Global Data: G = (V|E)
visited [i] indicates if node i is visited. / initially 0 /

Parent[i] = parent of a node in the Search / initially
NULL/

Entry[i] = node entry sequence / initially 0 /
Exit[i] = node exit sequence [initially 0 /

succ(i) = {set of nodes to which node i is connected}
numb = 0;

Dfs(node) {
visited[node] = 1; numb = numb+1;
Entry[node] = numb;
for each j in succ(node) do
if (visited [j] ==0) { Parent[j] = node;
Dfs(j) }

numb = numb +1;
Exit[node] = numb;

}

Topological Ordering, Level Values

Global Data: G = (V|E)
visited [i] indicates if node i is visited. / initially 0 /

Parent[i] = parent of a node in the Search / initially
NULL/

Entry[i] = node entry sequence / initially 0 /
Exit[i] = node exit sequence / initially 0 /

succ(i) = {set of nodes to which node i is connected}
numb = 0; numb1 =0;

Dfs(node) {
visited[node] = 1; numb = numb+1;
Entry[node] = numb;
for each j in succ(node) do
if (visited [j] ==0) { Parent[j] = node;
Dfs(j) }

numb1 = numb1 + 1;
Exit[node] = numb{;

}

Shortest Cost Path in Weighted DAGs

Global Data: G = (V,E)
Visited[i] all initialized to 0
Queue Q initially {}

BFS(k) {
visited [k] = 0; Q = {k};
While Q !={} {

j = DeQueue (Q);
if visited[j] == 0 {
visited [j] = 1;
For each k in succ (j) {
if (visited[k]==0) EnQueue(Q,k); }
}

}
[Parent links, Shortest Length Path Finding in
unweighted directed graphs/

Breadth-First Search

(A)

Pathfinding in Weighted Directed Graphs

Global Data: G = (V|E) 2

Visited[i] all initialized to 0, VQ“—_;@
Cost[j] all initialized to INFINITY 0! 4\% Jz ©
Ordered Queue Q initially {}) 53
BFSW(k) { \® O
visited [k] = 0; cost [k] =0; Q = {k}; Weighted Graph

While Q != {} {

j = DeQueue (Q);

if visited[j] == 0 {

visited [j] = 1;

For each k in succ (j) {

if cost[k] > cost[j] + cj,k]
cost[k] = cost[j] + c[j,k];

EnQueue(Q,k);}

Thank you

