TRAVERSAL OF UNDIRECTED GRAPHS

e o
r . e - { 7 "_I
r 1 L —
~ Iul o
A L . ~ l_-'_ “
.-"'J'q"\ i j“"’.f I'-. ﬁ !
i | 4
8 (3}— 2 /—
‘-"-:___L f ,E, /:I
o
I'\i::'

Aritra Hazra & Partha P Chakrabarti
Indian Institute of Technology Kharagpur

Undirected Graph

An Undirected Graph G = (V, E) consists of the
following:

e Asetof Vertices or Nodes V

* Asetof Edges E where each edge
connects two vertices of V

Example: Figure 1

v={01,2,34,5,6,7,8}

E ={(0,1), (0,8), (0,3),(1,7), (2,3), (2,5), (2,7), (34),
(4,8), (5,6)}

Successor Function: succ(i) = {set of nodes to
which node i is connected}

Example: Succ(2) = {3,5,7}
Weighted Undirected Graphs: Such Graphs
may have weights on edges (Figure 2)

Figure 2

Problems on Undirected Graphs

Reachability, Path, Cycle | Tree Detection, ® O -
Connected Components, Bi-Connected P
Components, Spanning Tree, Shortest Gy ‘ (6)
Path, Maximum Flow, Vertex Cover, Edge N
Cover, Travelling Salesperson, N 'f_-,-.,;_ (s)

4

Figure 2

Basic Traversal Algorithm (Depth First Search) |

Global Data: G = (V,E) ®) -
visited [i] indicates if node i is visited. For
all nodes j visited [j] is initialized to 0 OB
succ(i) = {set of nodes to which node i is
connected}
Dfs(node) {

visited[node] = 1;

for each j in succ(node) do {

if (visited [j] ==0) Dfs(j)
}
}

Basic Traversal Algorithm (Depth First Search) Il

Global Data: G = (V,E)
visited [i] indicates if node i is visited. For N J,Q
all noFIes j visited [j] is initialized to 0 3 é\ o
succ(i) = {set of nodes to which node i is / \ /
connected} ®
Dfs(node) { / \

® ®

visited[node] = 1;
for each j in succ(node) do {
if (visited [j] ==0) Dfs(j)
}
}

Basic Traversal Algorithm (Depth First Search) Il

Global Data: G = (V,E)

visited [i] indicates if node i is visited. For

all nodes j visited [j] is initialized to 0 ‘ ° o o}
succ(i) = {set of nodes to which node i is '

connected} ° o o o oo
Dfs(node) {

visited[node] = 1;
for each j in succ(node) do {
if (visited [j] ==0) Dfs(j)
}
}

Cycle Detection

Global Data: G = (V,E)
visited [i] indicates if node i is visited. For all
nodes j visited [j] is initialized to 0
succ(i) = {set of nodes to which node i is
connected}
Dfs(node) {

visited[node] = 1;

for each j in succ(node) do {

if (visited [j] ==0) Dfs(j)

}

}
Il Cycle Detection /]

Path Finding

Global Data: G = (V,E)

visited [i] indicates if node i is visited. For all nodes j
visited [j] is initialized to 0

succ(i) = {set of nodes to which node i is connected}
Dfs(node) {
visited[node] = 1;
for each j in succ(node) do {
if (visited [j] ==0) {

Dfs(j) }
}

}
Il Tree Edge, Back Edge, Parent Links, Tracing Paths

I

Connected Components

Global Data: G = (V,E)
Visited[i], compl[i] all initialized to 0 R e R
count = 0; \ [\
/?D—C 5\\ O
Algorithm components() { & "
for each node k do { E
if visited [k] == 0 { count = count + 1, / ®

DfComp_S(k) }

DfComp(node) {
visited[node] = 1; comp[node] = count;
for each j in succ(node) do {
if (visited [j] ==0) DfComp(j)
}
}

Depth-First Numbering & Time Stamping

Global Data: G = (V,E) ® ®
Visited[i], compli] all initialized to 0 . ® @
count = 0; \ /\
\) \\:\

Algorithm components() { / 5\ ,Q
for each node k do { O \ /

if visited [k] == 0 { count = count + 1, @

DfComp_S(k) } / i
®

DfComp(node) {
visited[node] = 1; comp[node] = count;
for each j in succ(node) do {
if (visited [j] ==0) {

DfComp(j)

}

Breadth-First Search

Global Data: G = (V,E)
Visited[i] all initialized to 0
Queue Q initially {}
BFS(k) {
visited [kK] = 0; Q ={k};
While Q = {} {
j = DeQueue (Q);
if visited[j] == 0 {
visited [j] = 1;
For each k in succ (j) EnQueue(Q,k);
}

}

[Parent links, Shortest Length Path Finding in
unweighted graphs/

Pathfinding in Weighted Undirected Graphs |

Global Data: G = (V,E)

Visited[i] all initialized to 0,

Cost][j] all initialized to INFINITY
Ordered Queue Q initially {}
BFSW(K) {

visited [k] = 0; cost [k] =0; Q = {k};
While Q !={} {

j = DeQueue (Q);
if visited[j] == 0 {
visited [j] = 1;
For each k in succ (j) {
if cost[k] > cost[j] + c[j,k]
cost[k] = cost[j] + c[j,k];
EnQueue(Q,k);}
}
}

Pathfinding in Weighted Undirected Graphs Il

Global Data: G = (V,E)

Visited[i] all initialized to 0,

Cost][j] all initialized to INFINITY
Ordered Queue Q initially {}
BFSW(K) {

visited [k] = 0; cost [k] =0; Q = {k};
While Q !={} {

j = DeQueue (Q);
if visited[j] == 0 {
visited [j] = 1;
For each k in succ (j) {
if cost[k] > cost[j] + c[j,k]
cost[k] = cost[j] + c[j,k];
EnQueue(Q,k);}
}
}

Thank you

	Traversal of Undirected Graphs
	Undirected Graph
	Problems on Undirected Graphs
	Basic Traversal Algorithm (Depth First Search) I
	Basic Traversal Algorithm (Depth First Search) II
	Basic Traversal Algorithm (Depth First Search) III
	Cycle Detection
	Path Finding
	Connected Components
	Depth-First Numbering & Time Stamping
	Breadth-First Search
	Pathfinding in Weighted Undirected Graphs I
	Pathfinding in Weighted Undirected Graphs II
	Slide 14

