
TRAVERSAL OF UNDIRECTED GRAPHS

Aritra Hazra & Partha P Chakrabart
Indian Insttute of Technology Kharagpur

Undirected Graph
An Undirected Graph G = (V, E) consists of the
following:
• A set of Vertices or Nodes V
• A set of Edges E where each edge

connects two vertices of V
Example: Figure 1
V = {0,1,2,3,4,5,6,7,8}
E = {(0,1), (0,8), (0,3),(1,7), (2,3), (2,5), (2,7), (3,4),
(4,8), (5,6)}
Successor Function: succ(i) = {set of nodes to
which node i is connected}
Example: Succ(2) = {3,5,7}
Weighted Undirected Graphs: Such Graphs
may have weights on edges (Figure 2)

Figure 1

Figure 2

Problems on Undirected Graphs
Reachability, Path, Cycle / Tree Detection,
Connected Components, Bi-Connected
Components, Spanning Tree, Shortest
Path, Maximum Flow, Vertex Cover, Edge
Cover, Travelling Salesperson,

Figure 1

Figure 2

Basic Traversal Algorithm (Depth First Search) I
Global Data: G = (V,E)
visited [i] indicates if node i is visited. For
all nodes j visited [j] is initialized to 0
succ(i) = {set of nodes to which node i is
connected}
Dfs(node) {
 visited[node] = 1;
 for each j in succ(node) do {
 if (visited [j] ==0) Dfs(j)
 }
 }

Basic Traversal Algorithm (Depth First Search) II
Global Data: G = (V,E)
visited [i] indicates if node i is visited. For
all nodes j visited [j] is initialized to 0
succ(i) = {set of nodes to which node i is
connected}
Dfs(node) {
 visited[node] = 1;
 for each j in succ(node) do {
 if (visited [j] ==0) Dfs(j)
 }
 }

Basic Traversal Algorithm (Depth First Search) III
Global Data: G = (V,E)
visited [i] indicates if node i is visited. For
all nodes j visited [j] is initialized to 0
succ(i) = {set of nodes to which node i is
connected}
Dfs(node) {
 visited[node] = 1;
 for each j in succ(node) do {
 if (visited [j] ==0) Dfs(j)
 }
 }

Cycle Detection
Global Data: G = (V,E)
visited [i] indicates if node i is visited. For all
nodes j visited [j] is initialized to 0
succ(i) = {set of nodes to which node i is
connected}
Dfs(node) {
 visited[node] = 1;
 for each j in succ(node) do {

 if (visited [j] ==0) Dfs(j)

 }
 }
// Cycle Detection //

Path Finding
Global Data: G = (V,E)
visited [i] indicates if node i is visited. For all nodes j
visited [j] is initialized to 0

succ(i) = {set of nodes to which node i is connected}
Dfs(node) {
 visited[node] = 1;
 for each j in succ(node) do {
 if (visited [j] ==0) {

 Dfs(j) }
 }
 }
// Tree Edge, Back Edge, Parent Links, Tracing Paths
//

Connected Components
Global Data: G = (V,E)
Visited[i], comp[i] all initialized to 0
count = 0;

Algorithm components() {
for each node k do {
 if visited [k] == 0 { count = count + 1;
 DfComp_S(k) }

DfComp(node) {
 visited[node] = 1; comp[node] = count;
 for each j in succ(node) do {
 if (visited [j] ==0) DfComp(j)
 }
 }

Depth-First Numbering & Time Stamping
Global Data: G = (V,E)
Visited[i], comp[i] all initialized to 0
count = 0;

Algorithm components() {
for each node k do {
 if visited [k] == 0 { count = count + 1;
 DfComp_S(k) }

DfComp(node) {
 visited[node] = 1; comp[node] = count;
 for each j in succ(node) do {
 if (visited [j] ==0) {

 DfComp(j)

 }
 }
 }

Breadth-First Search
Global Data: G = (V,E)
Visited[i] all initialized to 0
Queue Q initially {}
 BFS(k) {
 visited [k] = 0; Q = {k};
 While Q != {} {
 j = DeQueue (Q);
 if visited[j] == 0 {
 visited [j] = 1;
 For each k in succ (j) EnQueue(Q,k);
 }
 }
/Parent links, Shortest Length Path Finding in
unweighted graphs/

Pathfinding in Weighted Undirected Graphs I
Global Data: G = (V,E)
Visited[i] all initialized to 0,
Cost[j] all initialized to INFINITY
Ordered Queue Q initially {}
 BFSW(k) {
 visited [k] = 0; cost [k] = 0; Q = {k};
 While Q != {} {
 j = DeQueue (Q);
 if visited[j] == 0 {
 visited [j] = 1;
 For each k in succ (j) {
 if cost[k] > cost[j] + c[j,k]
 cost[k] = cost[j] + c[j,k];
 EnQueue(Q,k);}
 }
}

Pathfinding in Weighted Undirected Graphs II
Global Data: G = (V,E)
Visited[i] all initialized to 0,
Cost[j] all initialized to INFINITY
Ordered Queue Q initially {}
 BFSW(k) {
 visited [k] = 0; cost [k] = 0; Q = {k};
 While Q != {} {
 j = DeQueue (Q);
 if visited[j] == 0 {
 visited [j] = 1;
 For each k in succ (j) {
 if cost[k] > cost[j] + c[j,k]
 cost[k] = cost[j] + c[j,k];
 EnQueue(Q,k);}
 }
}

Thank you

	Traversal of Undirected Graphs
	Undirected Graph
	Problems on Undirected Graphs
	Basic Traversal Algorithm (Depth First Search) I
	Basic Traversal Algorithm (Depth First Search) II
	Basic Traversal Algorithm (Depth First Search) III
	Cycle Detection
	Path Finding
	Connected Components
	Depth-First Numbering & Time Stamping
	Breadth-First Search
	Pathfinding in Weighted Undirected Graphs I
	Pathfinding in Weighted Undirected Graphs II
	Slide 14

