Introduction to GRAPHS

Aritra Hazra \& Partha P Chakrabarti Indian Institute of Technology Kharagpur

Graphs

A Graph $G=(V, E)$ consists of the

 following:- A set of Vertices or Nodes V
- Nodes may have one or more labels
- A set of Edges E where each edge connects vertices of V
- An edge usually defines a connection or relationship between vertices or nodes
- The edges can be undirected or directed
- Each edge can have one or more labels
- Usually there is at most one edge between vertices, there could be multiple edges between the same nodes.
- Normally an edge connects two vertices, but in general we could have hyper-edges

Graphs

A Graph $G=(V, E)$ consists of the

 following:- A set of Vertices or Nodes V
- Nodes may have one or more labels
- A set of Edges E where each edge connects vertices of V
- An edge usually defines a connection or relationship between vertices or nodes
- The edges can be undirected or directed
- Each edge can have one or more labels
- Usually there is at most one edge between vertices, there could be multiple edges between the same nodes.
- Normally an edge connects two vertices, but in general we could have hyper-edges

Some Applications of Graphs

- Maps, Routes
- Layouts
- Circuits and Networks
- Relationships
- Constraints
- Dependencies
- Flow Charts
- State Machines

Some Applications of Graphs

- Maps, Routes
- Layouts
- Circuits and Networks
- Relationships
- Constraints
- Dependencies
- Flow Charts
- State Machines

Some Applications of Graphs

- Maps, Routes
- Layouts
- Circuits and Networks
- Relationships
- Constraints

Some Applications of Graphs

- Maps, Routes

- Layouts
- Circuits and Networks
- Relationships
- Constraints
- Dependencies
- Flow Charts
- State Machines

Some Applications of Graphs

- Maps, Routes
- Layouts
- Circuits and Networks

Some Applications of Graphs

- Maps, Routes
- Layouts
- Circuits and Networks

Instructions

- fill in words from the list

```
List of Words
* Aft * Laser
- Ale - Lee
* Eel * Line
- Hike . Sails
* Hoses * Sheet
- Keel - Steer
    - Knot - Tie
```


Some Applications of Graphs

- Maps, Routes

- Layouts
- Circuits and Networks
- Relationships
- Constraints

- Dependencies
- Flow Charts
- State Machines

Some Applications of Graphs

- Maps, Routes
- Layouts
- Circuits and Networks
- Relationships
- Constraints
- Dependencies
- Flow Charts
- State Machines

Some Applications of Graphs

- Maps, Routes
- Layouts
- Circuits and Networks
- Relationships

- Constraints
- Dependencies
- Flow Charts
- State Machines

Graph Representation

Adjacency List

Adjacency Matrix

Graph Representation

Adjacency Matrix
Adjacency List

Some Algorithms on Graphs

- Paths
- Reachability
- Connected Components
- Trees, Cycles, ordering

- Costs \& Distances
- Spanning Trees
- Shortest Paths
- Flows

Some Algorithms on Graphs

- Paths
- Reachability
- Trees, Cycles, ordering
- Connected

Some Algorithms on Graphs

- Paths
- Reachability
- Cycles, ordering
- Connected Components

- Costs \& Distances
- Spanning Trees
- Shortest Paths
- Flows

Some Algorithms on Graphs

- Paths

- Reachability
- Cycles, ordering
- Connected Components

- Costs \& Distances
- Spanning Trees
- Shortest Paths
- Flows

Some Algorithms on Graphs

- Paths
- Reachability
- Cycles, ordering
- Connected Components
- Costs \& Distances
- Spanning Trees
- Shortest Paths
- Flows

Thank you

