Disjoint Set Data Structure

Partha P. Chakrabarti \& Aritra Hazra
 Department of Computer Science and Engineering
 Indian Institute of Technology Kharagpur

Disjoint-Set Data Structures: Applications

Minimum Spanning Tree of Graph (G)
Algorithm MST_Kruskal ($\mathbf{G}=(\mathrm{V}, \mathrm{E})$) \{ $\mathrm{A}=\{ \} ;$
for each v in V do MAKE-SET(v);
for each edge $e=(u, v)$ in E ordered by increasing weight(u, v) do \{ if FIND-SET(u) $=$ FIND-SET(v) then \{

$$
\mathrm{A}=\mathrm{A}+\{(\mathrm{u}, \mathrm{v})\} ;
$$

UNION(FIND-SET(u), FIND-SET(v)); \}
\}
return A;

Disjoint-Set Data-Type and Operations

- Primary Operations:
- MAKE-SET(x):
- FIND-SET(x):
- UNION(x, y):
create a new set containing only element x return a canonical element in the set containing x replace the sets containing x and y with their union
- Performance parameters:
- $m=$ number of calls to FIND-SET and UNION operations
- $n=$ number of elements $=$ number of calls to MAKE-SET
disjoint sets $=$ connected components
- Application: Dynamic connectivity over initially empty graph
- ADD-NODE(u): add node u
- ADD-EDGE(u, v): add an edge between nodes u and v
- IS-CONNECTED (u, v) : is there a path between u and v ?
(1 MAKE-SET operation)
(1 UNION operation)
(2 FIND-SET operations)

Disjoint-Set Operations: Implementation (1)

Linked List Implementation

- MAKE-SET(x): O(1)
- need to create only one node created with appropriate pointers
- FIND-SET(x): O(n)
- need to traverse entire linked list to find x
- UNION(x,y): O(n)
- need to point back all back-pointers of second list to head of first list

Set B: \{f, g, d\}
(a)

Set (A U B): $\{c, h, e, b, f, g, d\}$

(b)

Disjoint-Set Operations: Implementation (2)

- Array Representation
- Represent each set as tree of elements
- Allocate an array of parent [] of length n
- parent[i]=j(parent of element i is j)

- Analysis of Operations:
- Total zeros in array = Disjoint-sets
- FIND-SET(x): O(n) worst-case
- UNION(x,y): O(n) worst-case
- UNION(FIND-SET(x), FIND-SET(y))
- $\mathbf{O}(\mathrm{n})$ due to FIND-SET operation

Solution: Smart Union-Find Algorithms !!

Smart Disjoint-Set Operations: Union-by-Size

- Union-by-Size
- Maintain a tree size (number of nodes) for each root node
- Link root of smaller tree to root of larger tree (break tries arbitrarily)

FIND-SET(x) \{ while(x is not parent) $\mathrm{x} \leftarrow$ parent[x]; return x ;
\}
MAKE-SET(x) \{ parent $[\mathrm{x}] \leftarrow 0$; size $[x]<1$; return x ;
\}

```
UNION(x,y) {
    r< FIND-SET(x);
    s < FIND-SET(y);
    if(r == s) return r;
    else if(size[r] > size[s]) {
        parent[s] & r;
        size[r] = size[r] + size[s];
        return r;
    }
    else {
        parent[r] < s;
        size[s] = size[r] + size[s];
        return s;
    }
}
```


Analysis of Union-by-Size Heuristic (1)

Property: Using union-by-size, for every root node r, we have size $[r] \geq 2^{\text {height(r) }}$

Proof: [by induction on number of links]

Analysis of Union-by-Size Heuristic (2)

- Theorem: Using union-by-size, any UNION or FIND-SET operation takes $O\left(\log _{2} n\right)$ time in the worst case, where n is the number of elements
- Proof:
- The running time of each operation is bounded by the tree height
- Using union-by-size, a tree with n nodes can have height at most $\log _{2} n$
- By the previous property, the height is $\leq\left\lfloor\log _{2} n\right\rfloor$
- The UNION operation takes $0(1)$ time except for its two calls to FIND-SET
- FIND-SET required to find out the set representative (which is the root)
- m number of UNION and FIND-SET operations takes a total of $O\left(m \log _{2} n\right)$ time

Smart Disjoint-Set Operations: Union-by-Rank

- Union-by-Rank
- Maintain an integer rank for each node, initially 0
- Link root of smaller rank to root of larger rank; if tie, increase rank of larger root by 1

FIND-SET(\mathbf{x}) \{ while(x is not parent) $\mathrm{x} \leftarrow$ parent[x$]$; return x ;
\}
MAKE-SET(x) \{ parent $[x]<0$; $\operatorname{rank}[x] \leftarrow 0$; return x ;
\}
rank $=$ height

```
UNION(x,y) {
    r<FIND-SET(x);
    s < FIND-SET(y);
    if (r == s) return r;
    else if (rank[r] \geqrank[s]) {
        parent[s] < r;
        if(rank[r] == rank[s])
            rank[r] = rank[r] + 1;
        return r;
    }
    else {
        parent[r] < s;
        return s;
    }
}
```


Analysis of Union-by-Rank Heuristic (1)

Property-1: If x is not a root node, then rank[x \ll rank[parent[$x]$] Proof: A node of rank k is created only by linking two roots of rank $k-1$.

Property-2: If x is not a root node, then rank[$[x]$ will never change again Proof: Rank changes only for roots; a non-root never becomes a root.

Property-3: If parent[x] changes, then rank[parent[x]] strictly increases.
Proof: The parent can change only for a root, so before linking parent $[x]=0$. After x is linked using union-by-rank to new root r we have $\operatorname{rank}[r]>\operatorname{rank}[x]$.

Analysis of Union-by-Rank Heuristic (2)

Property-4: Any root node of rank k has $\geq 2^{k}$ nodes in its tree Proof: [by induction on k]

- Base case: true for $k=0$
- Inductive hypothesis: assume true for $k-1$
- A node of rank k is created only by linking two roots of rank $k-1$
- By inductive hypothesis, each of two sub-tree has $\geq 2^{k-1}$ nodes
=> resulting tree has $\geq 2^{k}$ nodes

Property-5: The highest rank of a node is $\leq\left\lfloor\log _{2} n\right\rfloor$
Proof: Immediately concluded from Property-1 and Property-4

Analysis of Union-by-Rank Heuristic (3)

Property-6: For any integer $k \geq 0$, there are $\leq n / 2^{k}$ nodes with rank k Proof:

- Any root node of rank k has $\geq 2^{k}$ descendants.
- Any non-root node of rank k has $\geq 2^{k}$ descendants because:
- it had this property just before it became a non-root
- its rank does not change once it became a non-root
- its set of descendants does not change once it became a non-root
- Different nodes of rank k cannot have common descendants
[by Property-1]
Theorem: Using union-by-rank, any UNION or FIND-SET operation takes $\mathrm{O}\left(\log _{2} \mathrm{n}\right)$ time in the worst case, where n is the number of elements.
Proof: The running time of UNION and FIND-SET is bounded by the tree height $\leq\left\lfloor\log _{2} n\right\rfloor$ [by Property-5]

Smart Disjoint-Set Operations: Path Compression

- When finding the root r of the tree containing x, change the parent pointer of all nodes along the path to point directly to r

Path Compression: Example

Properties of Union-by-Rank + Path Compression (1)

Property-0: The tree roots, node ranks, and elements within a tree are the same with or without path compression.
Property-1: If x is not a root node, then rank[x \ll rank[parent[x]]
Proof: Path compression can make x point to only an ancestor of parent[x]
Property-2: If x is not a root node, then rank[x] will never change again
Property-3: If parent[x] changes, then rank[parent[x]] strictly increases.
Proof: Path compression doesn't change any ranks, but it can change parents
If parent $[x]$ doesn't change during a path compression the inequality continues to hold if parent[x] changes, then rank[parent[x]] strictly increases
Property-4: Any root node of rank k has $\geq 2^{k}$ nodes in its tree
Property-5: The highest rank of a node is $\leq\left\lfloor\log _{2} n\right\rfloor$
Property-6: For any integer $k \geq 0$, there are $\leq n / 2^{k}$ nodes with rank k

Properties of Union-by-Rank + Path Compression (2)

- Definitions:

Rank	Groups
1	0
2	1
$[3,4]$	2
$[5,16]$	3
$[17,65536]$	4
$\left[65537,2^{65536}\right]$	5

Property-7: The largest group number is $\leq \log ^{*}$ $\left(\log _{2} n\right)=\log ^{*} n-1$ Proof: Since largest possible rank is $\left\lfloor\log _{2} n\right\rfloor$, hence the result

Property-8: Number of nodes in a particular group g is given by, $\mathrm{n}_{\mathrm{g}}<\mathrm{n} / \mathrm{F}(\mathrm{g})$
Proof: $\mathrm{n}_{\mathrm{g}}<\sum^{\mathrm{F}(\mathrm{g})_{r=F(g-1)+1} \mathrm{n} / 2^{r}<2 \mathrm{n} / 2^{F(g-1)+1}=\mathrm{n} / 2^{F(g-1)}=n / F(g) .}$
[since, $n / 2^{r}+n / 2^{r+1}+n / 2^{r+2}+\ldots+n / 2^{r+k}$

$$
\left.<\left(n / 2^{r}\right) \Sigma_{0}^{\infty}\left(1 / 2^{k}\right)=2 n / 2^{r}\right]
$$

Analysis of Union-by-Rank with Path Compression (1)

- Case-1: If v is root ($=x$), a child of root or if parent[v] is in a different rank group; then we charge ONE unit of time to FIND-SET operation
- Case-2: If $\mathbf{v} \neq \mathrm{x}$, and both v and parent[u] are in the same group, then we charge ONE unit of time to node v
- Observation-1: Ranks of nodes in a path from u to x increases monotonically
- After x is found to be the root, we do path compression
- If later on, x becomes a child of another node and v \& x are in different groups, no more node charges on v in later FIND-SET operations

Analysis of Union-by-Rank with Path Compression (2)

- Observation-2: If a node v is in group $\mathrm{g}(\mathrm{g}>0)$, v can be moved and charged at most $[F(g)-F(g-1)]$ times before it acquires a parent in a higher group.
- Complexity Analysis:
- Time Complexity $=($ Number of nodes in group g) x (Movement charges across groups) x (Movement charges with groups) $=(n / F(g)) x\left(\log ^{*} n\right) x[F(g)-F(g-1)]$

$$
\leq n \log ^{*} n \quad[\text { since, }(n / F(g)) x[F(g)-F(g-1)] \leq n]
$$

- Theorem: The time complexity required to process m UNION and FIND-SET operations using union-by-rank with path-compression heuristic is $0\left(m \log ^{*} n\right)$ in the worst case
- which may be also said as $0(m)$, as $\log ^{*} \mathrm{n} \leq 5$ practically
(as otherwise n is more than the number of atoms in universe!!)

Thank you

