DISJOINT SET DATA STRUCTURE

Partha P. Chakrabarti & Aritra Hazra

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Disjoint-Set Data Structures: Appllcatlons

Minimum Spanning Tree of Graph (G)
Algorithm MST_Kruskal (G = (V,E)) {
A ={};
for each vin V do MAKE-SET(v);
for each edge e = (u, v) in E ordered by
increasing weight(u, v) do {
if FIND-SET(u) # FIND-SET(v) then {
A =A+{(u, V)
UNION(FIND-SET(u), FIND-SET(v));
}
}

return A;

}

Disjoint-Set Data-Type and Operations

* Primary Operations:

— MAKE-SET(x): create a new set containing only element x
— FIND-SET(x): return a canonical element in the set containing x
— UNION(x, y): replace the sets containing x and y with their union

« Performance parameters:
— m = number of calls to FIND-SET and UNION operations }

— n=number of elements = number of calls to MAKE-SET LSl sEE
connected components

« Application: Dynamic connectivity over initially empty graph
— ADD-NODE(u): add node u (1 MAKE-SET operation)
— ADD-EDGE(u, v): add an edge between nodes u and v (1 UNION operation)
— |IS-CONNECTED(u, v): is there a path between uand v ? (2 FIND-SET operations)

Disjoint-Set Operations: Implementation (1)

Linked List Implementation

MAKE-SET(x): O(1)
— need to create only one

node created with
appropriate pointers

FIND-SET(x): O(n)

— hneed to traverse entire
linked list to find x

UNION(x,y): O(n)

— need to point back all

back-pointers of second ;3.

list to head of first list

1y Set A: {c, h ,e, b}
headE—> C ’—> h ’—> e |—> Z
railD f
i Set B: {f, g, d}
headE,—» f ’—> g ’—> j
railD T
a)
(Set (AUB): {c, h, e, b, f, g, d}
il
e I e I e T e e e
A

tail E

(b)

Disjoint-Set Operations: Implementation (2)

* Array Representation
— Represent each set as tree of elements

— Allocate an array of parent[] of length n

— parent[i]=7] (parent of element i is j) 0 N
- * * © z ©

0 2 3 4 5 6 7 8)
parentl] | 7 | 5 | 7 8|7 |5|7]|8]|s3s
[0 0
root
(N parent of 3 is 8 ~ ()
Q% (7)
ONONO ONONO

Suppress self-loops for root for brevity! O ©

UNION(3,5) or
UNION(8,6) or
UNION(8,7)

-
-
-
-
-
-
-
-
-
-

Analysis of Operations:
— Total zeros in array = Disjoint-sets
— FIND-SET(x): O(n) worst-case
— UNION(x,y): O(n) worst-case

» UNION(FIND-SET(x), FIND-SET(y))

* O(n) due to FIND-SET operation

Solution: Smart Union-Find Algorithms !!

O—® ~ OO

Smart Disjoint-Set Operations: Union-by-Size

 Union-by-Size
— Maintain a tree size

(number of nodes) for
each root node

— Link root of smaller
tree to root of larger
tree (break tries
arbitrarily)

FIND-SET(x) {
while(x is not parent)
X € parent[x];

et X, [MAKE-SET(x) {

} parent[x] €< 0;

size[x] € 1;
return Xx;

}

UNION(x,y) {

}

r € FIND-SET(x);

s < FIND-SET(y);

if(r ==s) return r;

else if(size[r] > size[s]) {
parent[s] < r;
size[r] = size[r] + size[s];
returnr;

}

else {
parent[r] < s;
size[s] = size[r] + size[s];
return s;

}

size = 4

size = 6

UNION(3,5)

size = 10

Analysis of Union-by-Size Heuristic (1)

Property: Using union-by-size, for every root node r, we have size[r] 2 2height)

size = 8

Proof: [by induction on number of links] (height = 2)
— Base case: singleton tree has size 1 and height 0 <h':_ii:ﬁ. 2
— Inductive hypothesis: assume true after first i links .-

— Tree rooted at r changes only when a smaller (or
equal) size tree rooted at s is linked into r

size = 6
(height = 1)

— Case 1. [height(r) > height(s)] size=4 .4
size[r] > size[r] 2 2heiahti) = Pheight(n heish =) e
~ Case 2. [height(r) < height(s)] FEE—)

size'[r] = size[r] + size[s] 2 2 size[s] = 2 x 2height(s)
= 2height(s) + 1 = 9height (r)

Analysis of Union-by-Size Heuristic (2)

Theorem: Using union-by-size, any UNION or FIND-SET operation takes O(log, n)
time in the worst case, where n is the number of elements

Proof:
— The running time of each operation is bounded by the tree height
— Using union-by-size, a tree with n nodes can have height at most log, n
— By the previous property, the height is < |log, n|

The UNION operation takes O(1) time except for its two calls to FIND-SET
— FIND-SET required to find out the set representative (which is the root)

m number of UNION and FIND-SET operations takes a total of O(m log, n) time

Smart Disjoint-Set Operations: Union-by-Rank

 Union-by-Rank rank = height rank = 1 rank = 2

— Maintain an integer
rank for each node, UNION(x,y) { 0 (7,
initially 0 r € FIND-SET(x);

— Link root of smaller _sfé_IiIND-StET(yr): OmONO
rank to root of larger il I) S
rank: if tie, increase else if (rank[r] 2 rank[s]) { 0 ° 6 e 0
rank of larger root by 1 parents] < r;

if(rank[r] == rank[s])

FIND-SET(x) { rank[r] = rank[r] + 1; UNION(3,5)
while(x is not parent) returnr; ’
X € parent][x]; }

} s MAKE-SET(x) { els:a{rent[r] < s; 6 -
parent[x] € 0; oturn s:
rank[x] € 0; } ’
return Xx;

}) O OO © O

Analysis of Union-by-Rank Heuristic (1)

Property-1: If x is not a root node, then rank[x] < rank[parent[x]]
Proof: A node of rank k is created only by linking two roots of rank k - 1.

Property-2: If x is not a root node, then rank[x] will never change again
Proof: Rank changes only for roots; a non-root never becomes a root.

Property-3: If parent[x] changes, rank = 3
then rank[parent|x]] strictly
Increases. rank = 2
Proof: The parent can change

only for a root, so before linking
parent[x] = 0. After x is linked

using union-by-rank to new root

rank = 1

rank = 0

r we have rankir] > rank[x].

Analysis of Union-by-Rank Heuristic (2)

Property-4: Any root node of rank k —r—

has 2 2X nodes in its tree B)

Proof: [by induction on k]

- Base case: true for k=0 A= 2

« Inductive hypothesis: assume true (4 nodes) .,
for k-1

» Anode of rank k is created only
by linking two roots of rank k — 1

« By inductive hypothesis, each of
two sub-tree has 2 2k-1 nodes

=> resulting tree has = 2 nodes

Property-5: The highest rank of a node is < |log, n|
Proof: Inmediately concluded from Property-1 and Property-4

Analysis of Union-by-Rank Heuristic (3)

Property-6: For any integer k 2 0, there are < n/ 2¥ nodes with rank k
Proof:

« Any root node of rank k has 2 2k descendants. [by Property-4]
« Any non-root node of rank k has 2 2k descendants because:
= it had this property just before it became a non-root [by Property-4]
= jts rank does not change once it hecame a non-root [by Property-2]

= jts set of descendants does not change once it became a non-root

 Different nodes of rank k cannot have common descendants [by Property-1]

rank = 4

Theorem: Using union-by-rank, any
UNION or FIND-SET operation takes
O(log, n) time in the worst case, where
n is the number of elements.

Proof: The running time of UNION and
FIND-SET is bounded by the tree
height < | log, n| [by Property-5]

rank = 1

(5 nodes)

rank =0
(11 nodes)

rank = 2
(2 nodes)

rank = 3
(1 node)

(1 node)

Smart Disjoint-Set Operations: Path Compression

« When finding the root r of the tree containing x, change the parent pointer of all
nodes along the path to point directly to r

before path
compression

after path
compression

Path Compression: Examdply
— 4

FIND-SET(x) {
if(x is not parent)
parent[x] € FIND-SET(parent[x]);
return Xx;

}

Properties of Union-by-Rank + Path Compression (1)

Property-0: The tree roots, node ranks, and elements within a tree are the same with or
without path compression.

Property-1: If x is not a root node, then rank[x] < rank[parent[x]]
Proof: Path compression can make x point to only an ancestor of parent[x]

Property-2: If x is not a root node, then rank[x] will never change again

Property-3: If parent[x] changes, then rank[parent[x]] strictly increases.

Proof: Path compression doesn’t change any ranks, but it can change parents
If parent]x] doesn’t change during a path compression the inequality continues to hold
if parent[x] changes, then rank[parent{x]] strictly increases

Property-4: Any root node of rank k has 2 2* nodes in its tree
Property-5: The highest rank of a node is < |log, n|
Property-6: For any integer k 2 0, there are < n/ 2¥ nodes with rank k

Properties of Union-by-Rank + Path Compression (2)

» Definitions: Rank Groups
= — log*n=0, whenn=1 i times 1 0

t e =MIN{i20|fog, log, ... log, n <1}, when n = 2 2 1
% g — log*n=0, whenn =1 Recursive Definition] [3,4] 2
5" =1 + log* (log, n), otherwise (5. 16] 3

= = Ackerman Function, F(j)= 1, whenj=0 [17. 65536] 4
Property-7: The largest = 2700, whenj21 (65537, 265536] 5
group number is < log* Property-8: Number of nodes in a particular group g is
(log, n) =log™n -1 given by, n, < n/F(g)

Proof: Since Ia!rgest Proof: n, < ZF6) ;. 4 4 /2" < 2n/2Fe1*! = nj2F(e) = n/F(g)
possible rank is [log, n], [since, n/2" + n/2*1 4 nf2*2 + .., + n/2r*k

hence the result < (n/2") £, (1/24) = 2n/2]

Analysis of Union-by-Rank with Path Compression (1)
O

« Case-1: If vis root (= x), a child of root or if parent[v] is
in a different rank group; then we charge ONE unit of
time to FIND-SET operation

« Case-2: If v # x, and both v and parent[u] are in the
same group, then we charge ONE unit of time to node v

* Observation-1: Ranks of nodes in a path from u to x
increases monotonically

— After x is found to be the root, we do path
compression

— If later on, x becomes a child of another node and v
& x are in different groups, no more node charges \4yJ () =-==--~
on v in later FIND-SET operations

path-compression
w.r.t. FIND-SET(u)

Analysis of Union-by-Rank with Path Compression (2)

» Observation-2: If a node v is in group g (g > 0), v can be moved and charged at most
[F(g) - F(g-1)] times before it acquires a parent in a higher group.

« Complexity Analysis:
— Time Complexity = (Number of nodes in group g) x (Movement charges across
groups) x (Movement charges with groups) = (n/F(g)) x (log* n) x [F(g) — F(g-1)]
<nlog*n [since, (n/F(g))x[F(g) - F(g-1)]=n]

« Theorem: The time complexity required to process m UNION and FIND-SET
operations using union-by-rank with path-compression heuristic is O(m log* n) in
the worst case

— which may be also said as O(m), as log*n < 5 practically
(as otherwise n is more than the number of atoms in universe!!)

Thank you

