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Disjoint-Set Data Structures: Applications 
Minimum Spanning Tree of Graph (G) 
    Algorithm MST_Kruskal ( G = (V,E) ) { 
        A = { }; 
        for each v in V do MAKE-SET(v); 
        for each edge e = (u, v) in E ordered by 
        increasing weight(u, v) do { 
            if FIND-SET(u) ≠ FIND-SET(v) then { 
                A = A + {(u, v)}; 
                UNION(FIND-SET(u), FIND-SET(v)); 
            } 
        } 
        return A; 
    } 



Disjoint-Set Data-Type and Operations 
•  Primary Operations: 

–  MAKE-SET(x):  create a new set containing only element x 
–  FIND-SET(x):  return a canonical element in the set containing x 
–  UNION(x, y):  replace the sets containing x and y with their union 

•  Performance parameters: 
–  m = number of calls to FIND-SET and UNION operations 
–  n = number of elements = number of calls to MAKE-SET 

•  Application: Dynamic connectivity over initially empty graph 
–  ADD-NODE(u): add node u     (1 MAKE-SET operation) 
–  ADD-EDGE(u, v): add an edge between nodes u and v  (1 UNION operation) 
–  IS-CONNECTED(u, v): is there a path between u and v ?  (2 FIND-SET operations) 

disjoint sets = 
connected components 



Disjoint-Set Operations: Implementation (1) 
Linked List Implementation 
•  MAKE-SET(x): O(1) 

–  need to create only one 
node created with 
appropriate pointers 

•  FIND-SET(x): O(n) 
–  need to traverse entire 

linked list to find x 
•  UNION(x,y): O(n) 

–  need to point back all 
back-pointers of second 
list to head of first list 

Set A: {c, h ,e, b} 

Set (A U B): {c, h, e, b, f, g, d} 

Set B: {f, g, d} 



Disjoint-Set Operations: Implementation (2) 
•  Array Representation 

–  Represent each set as tree of elements 
–  Allocate an array of parent[] of length n 
–  parent[i]=j (parent of element i is j) 
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UNION(3,5) or 
UNION(8,6) or 
UNION(8,7) 

•  Analysis of Operations: 
–  Total zeros in array = Disjoint-sets 
–  FIND-SET(x):  O(n) worst-case 
–  UNION(x,y):    O(n) worst-case 

•  UNION(FIND-SET(x), FIND-SET(y)) 
•  O(n) due to FIND-SET operation 

Suppress self-loops for root for brevity! Solution:  Smart Union-Find Algorithms !! 



Smart Disjoint-Set Operations: Union-by-Size 
•  Union-by-Size 

–  Maintain a tree size 
(number of nodes) for 
each root node 

–  Link root of smaller 
tree to root of larger 
tree (break tries 
arbitrarily) 

FIND-SET(x) { 
    while(x is not parent) 
        x ß parent[x]; 
    return x; 
} 

UNION(x,y) { 
    r ß FIND-SET(x); 
    s ß FIND-SET(y); 
    if(r == s) return r; 
    else if(size[r] > size[s]) { 
        parent[s] ß r; 
        size[r] = size[r] + size[s]; 
        return r; 
    } 
    else { 
        parent[r] ß s; 
        size[s] = size[r] + size[s]; 
        return s; 
    } 
} 

MAKE-SET(x) { 
    parent[x] ß 0; 
    size[x] ß 1; 
    return x; 
} 

UNION(3,5) 



Analysis of Union-by-Size Heuristic (1) 

Proof:  [ by induction on number of links ] 
–  Base case: singleton tree has size 1 and height 0 
–  Inductive hypothesis: assume true after first i links 

–  Tree rooted at r changes only when a smaller (or 
equal) size tree rooted at s is linked into r 

–  Case 1. [ height(r) > height(s) ] 
sizeʹ[r] > size[r] ≥ 2height(r) = 2heightʹ(r) 

–  Case 2. [ height(r) ≤ height(s) ] 
sizeʹ[r] = size[r] + size[s] ≥ 2 size[s] ≥ 2 x 2height(s) 
= 2height(s) + 1 = 2heightʹ(r) 

Property: Using union-by-size, for every root node r, we have size[r] ≥ 2height(r) 



Analysis of Union-by-Size Heuristic (2) 
•  Theorem: Using union-by-size, any UNION or FIND-SET operation takes O(log2 n) 

time in the worst case, where n is the number of elements 
•  Proof: 

–  The running time of each operation is bounded by the tree height 
–  Using union-by-size, a tree with n nodes can have height at most log2 n 
–  By the previous property, the height is ≤ ⎣log2 n⎦ 

•  The UNION operation takes O(1) time except for its two calls to FIND-SET 
–  FIND-SET required to find out the set representative (which is the root) 

•  m number of UNION and FIND-SET operations takes a total of O(m log2 n) time 



Smart Disjoint-Set Operations: Union-by-Rank 
•  Union-by-Rank 

–  Maintain an integer 
rank for each node, 
initially 0 

–  Link root of smaller 
rank to root of larger 
rank; if tie, increase 
rank of larger root by 1 

FIND-SET(x) { 
    while(x is not parent) 
        x ß parent[x]; 
    return x; 
} 

UNION(x,y) { 
    r ß FIND-SET(x); 
    s ß FIND-SET(y); 
    if (r == s) return r; 
    else if (rank[r] ≥ rank[s]) { 
        parent[s] ß r; 
        if(rank[r] == rank[s]) 
            rank[r] = rank[r] + 1; 
        return r; 
    } 
    else { 
        parent[r] ß s; 
        return s; 
    } 
} 

MAKE-SET(x) { 
    parent[x] ß 0; 
    rank[x] ß 0; 
    return x; 
} 

UNION(3,5) 

rank = height 



Analysis of Union-by-Rank Heuristic (1) 
Property-1: If x is not a root node, then rank[x] < rank[parent[x]] 
Proof: A node of rank k is created only by linking two roots of rank k – 1. 

Property-2: If x is not a root node, then rank[x] will never change again 
Proof: Rank changes only for roots; a non-root never becomes a root. 

Property-3: If parent[x] changes, 
then rank[parent[x]] strictly 
increases. 
Proof: The parent can change 
only for a root, so before linking 
parent[x] = 0. After x is linked 
using union-by-rank to new root 
r we have rank[r] > rank[x].  



Analysis of Union-by-Rank Heuristic (2) 
Property-4: Any root node of rank k 
has ≥ 2k nodes in its tree 
Proof: [ by induction on k ] 
•  Base case: true for k = 0 
•  Inductive hypothesis: assume true 

for k – 1 
•  A node of rank k is created only 

by linking two roots of rank k – 1 
•  By inductive hypothesis, each of 

two sub-tree has ≥ 2k – 1 nodes 
          => resulting tree has ≥ 2k nodes 

Property-5: The highest rank of a node is ≤ ⎣log2 n⎦ 
Proof: Immediately concluded from Property-1 and Property-4  



Analysis of Union-by-Rank Heuristic (3) 
Property-6: For any integer k ≥ 0, there are ≤ n / 2k nodes with rank k 
Proof: 
•  Any root node of rank k has ≥ 2k descendants.     [by Property-4] 
•  Any non-root node of rank k has ≥ 2k descendants because: 

§  it had this property just before it became a non-root    [by Property-4] 
§  its rank does not change once it became a non-root    [by Property-2] 
§  its set of descendants does not change once it became a non-root  

•  Different nodes of rank k cannot have common descendants   [by Property-1]  

Theorem: Using union-by-rank, any 
UNION or FIND-SET operation takes 
O(log2 n) time in the worst case, where 
n is the number of elements.  
Proof: The running time of UNION and 
FIND-SET is bounded by the tree 
height ≤ ⎣log2 n⎦        [by Property-5] 



Smart Disjoint-Set Operations: Path Compression 
•  When finding the root r of the tree containing x, change the parent pointer of all 

nodes along the path to point directly to r 



Path Compression: Example 

FIND-SET(x) { 
    if(x is not parent) 
        parent[x] ß FIND-SET(parent[x]); 
    return x; 
} 



Properties of Union-by-Rank + Path Compression (1) 
Property-0: The tree roots, node ranks, and elements within a tree are the same with or 
without path compression. 
 

Property-1: If x is not a root node, then rank[x] < rank[parent[x]] 
Proof: Path compression can make x point to only an ancestor of parent[x] 
 

Property-2: If x is not a root node, then rank[x] will never change again 
 

Property-3: If parent[x] changes, then rank[parent[x]] strictly increases. 
Proof: Path compression doesn’t change any ranks, but it can change parents 

 If parent[x] doesn’t change during a path compression the inequality continues to hold 
 if parent[x] changes, then rank[parent[x]] strictly increases 

 

Property-4: Any root node of rank k has ≥ 2k nodes in its tree 
 

Property-5: The highest rank of a node is ≤ ⎣log2 n⎦ 
 

Property-6: For any integer k ≥ 0, there are ≤ n / 2k nodes with rank k 



•  Definitions: 
–  log* n = 0,  when n ≤ 1 

         = MIN { i ≥ 0 | log2 log2 … log2 n ≤1}, when n ≥ 2 
–  log* n = 0, when n ≤ 1 

         = 1 + log* (log2 n), otherwise 
–  Ackerman Function, F(j) =  1,  when j = 0 

           =  2F(j-1),  when j ≥ 1 

Groups Rank 

Property-7: The largest 
group number is ≤ log* 
(log2 n) = log* n – 1 
Proof: Since largest 
possible rank is ⎣log2 n⎦, 
hence the result 

Property-8: Number of nodes in a particular group g is 
given by, ng < n/F(g) 
Proof: ng < ΣF(g)

r=F(g-1) +1 n/2r < 2n/2F(g-1)+1 = n/2F(g-1) = n/F(g) 

[ since, n/2r + n/2r+1 + n/2r+2 + … + n/2r+k 
  < (n/2r) Σ∞

0 (1/2k) = 2n/2r ] 

Properties of Union-by-Rank + Path Compression (2) 
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Analysis of Union-by-Rank with Path Compression (1) 
•  Case-1: If v is root (= x), a child of root or if parent[v] is 

in a different rank group; then we charge ONE unit of 
time to FIND-SET operation 

•  Case-2: If v ≠ x, and both v and parent[u] are in the 
same group, then we charge ONE unit of time to node v 

 

•  Observation-1: Ranks of nodes in a path from u to x 
increases monotonically 
–  After x is found to be the root, we do path 

compression 
–  If later on, x becomes a child of another node and v 

& x are in different groups, no more node charges 
on v in later FIND-SET operations 

x

v

u

parent[u] 

u v

x

path-compression 
w.r.t. FIND-SET(u) 



Analysis of Union-by-Rank with Path Compression (2) 
•  Observation-2: If a node v is in group g (g > 0), v can be moved and charged at most 

[F(g) – F(g-1)] times before it acquires a parent in a higher group. 
 

•  Complexity Analysis: 
–  Time Complexity = (Number of nodes in group g) x (Movement charges across 

groups) x (Movement charges with groups) = (n/F(g)) x (log* n) x [F(g) – F(g-1)] 
    ≤ n log* n        [ since, (n/F(g))x[F(g) – F(g-1)] ≤ n ] 

 

•  Theorem: The time complexity required to process m UNION and FIND-SET 
operations using union-by-rank with path-compression heuristic is O(m log* n) in 
the worst case 
–  which may be also said as O(m), as log*n ≤ 5 practically 

 (as otherwise n is more than the number of atoms in universe!!) 



Thank you 


