Indian Institute of Technology Kharagpur Department of Computer Science and Engineering

Algorithms-I (CS21003) Class Test - 1 Solutions [Maximum Marks: 20] Spring Semester, 2019-2020
Date: 03-Feb-2020 (Monday) | Time: 7:00pm - 8:00pm | Venue: F-116/F-142

Name: \qquad Roll No: \qquad
[Instructions: Write your answers in proper places mentioned in the question paper itself. Answer ALL questions. Be brief and precise. If you use any algorithm/result/formula covered in class, just mention it, do not elaborate.]

Q1. Let two recursive algorithms satisfy the following two recurrence relations:
(i) $T(n)=\left\{\begin{array}{ll}3 \cdot T\left(\frac{n}{3}\right)+n, & \text { if } n>1 \\ 1 & \text { if } n=1\end{array} \quad\right.$ and
(ii) $T(n)= \begin{cases}\sqrt{n} \cdot T(\sqrt{n})+n \cdot \log _{2}^{d} n, & \text { if } n>2 \\ 2, & \text { if } n=2\end{cases}$
$(d \geq 0)$

Deduce the running time $T(n)$ in asymptotic Θ-notation for both of these cases separately. [Marks: 4+6=10]

Solution:

(i) Given that, $T(n)=3 \cdot T\left(\frac{n}{3}\right)+n \quad$ and $\quad T(1)=1$.

$$
\begin{aligned}
& \Longrightarrow \quad T(n)=3^{2} \cdot T\left(\frac{n}{3^{2}}\right)+3 \cdot \frac{n}{3}+n=3^{3} \cdot T\left(\frac{n}{3^{3}}\right)+3^{2} \cdot \frac{n}{3^{2}}+3 \cdot \frac{n}{3}+n=\cdots=3^{k} \cdot T\left(\frac{n}{3^{k}}\right)+n \cdot k \\
& \Longrightarrow \quad T(n)=3^{k} \cdot T(1)+n \cdot k=n+n \cdot \log _{3} n=\Theta\left(n \log _{2} n\right) \quad \ldots \ldots\left[\text { assuming }, n=3^{k}\right]
\end{aligned}
$$

Marking Scheme:

- Expansions $/$ Calculations shown $=2$-marks
- Final closed-form computed = 1-mark
- Θ-notation provided $=1$-mark
(ii) Given that, $T(n)=\sqrt{n} \cdot T(\sqrt{n})+n \cdot \log _{2}^{d} n$ (where $d \geq 0$) and $\quad T(2)=2$.

$$
\begin{aligned}
& \Longrightarrow \quad \frac{T(n)}{n}=\frac{T(\sqrt{n})}{\sqrt{n}}+\log _{2}^{d} n \quad \ldots \ldots[\text { diving both sides by } n] \\
& \Longrightarrow \quad S(n)=S(\sqrt{n})+\log _{2}^{d} n \quad \ldots \ldots\left[\text { assuming, } S(n)=\frac{T(n)}{n}\right] \\
& \Longrightarrow \quad S\left(2^{2^{k}}\right)=S\left(2^{2^{(k-1)}}\right)+\left(2^{k}\right)^{d} \quad \ldots \ldots\left[\text { substituting, } n=2^{2^{k}}\right] \\
& \Longrightarrow \quad R(k)=R(k-1)+\left(2^{k}\right)^{d} \quad \ldots \ldots\left[\text { let, } R(k)=S\left(2^{2^{k}}\right)\right] \\
& \Longrightarrow \quad R(k)=R(0)+\left(2^{d}\right)^{1}+\left(2^{d}\right)^{2}+\cdots+\left(2^{d}\right)^{k-1}+\left(2^{d}\right)^{k} \quad \ldots \ldots\left[\text { because, }\left(2^{k}\right)^{d}=2^{k d}=\left(2^{d}\right)^{k}\right] \\
& \Longrightarrow \quad R(k)=1+\sum_{i=1}^{k}\left(2^{d}\right)^{i} \quad \ldots \ldots\left[S(2)=\frac{T(2)}{2}=1, \text { implying } R(0)=S\left(2^{2^{0}}\right)=1\right] \\
& \Longrightarrow \quad R(k)=\left\{\begin{aligned}
\frac{\left(2^{d}\right)^{(k+1)}-1}{2^{d}-1}, & \text { if } d>0 \\
1+k, & \text { if } d=0
\end{aligned}\right.
\end{aligned}
$$

Hence, $R(k)=S\left(2^{2^{k}}\right)=\left\{\begin{array}{rll}\frac{\left(2^{d}\right)^{(k+1)}-1}{2^{d}-1} & =\Theta\left(2^{k d}\right), & \\ 1+k & \text { if } d>0 \\ 1+k(k), & & \text { if } d=0\end{array}\right.$
which means, $S(n)=\left\{\begin{aligned} \Theta\left(\log _{2}^{d} n\right), & \text { if } d>0 \\ \Theta\left(\log _{2} \log _{2} n\right), & \text { if } d=0\end{aligned} \quad\right.$ implying, $\quad T(n)=\left\{\begin{aligned} \Theta\left(n \cdot \log _{2}^{d} n\right), & \text { if } d>0 \\ \Theta\left(n \cdot \log _{2} \log _{2} n\right), & \text { if } d=0\end{aligned}\right.$

$$
\ldots \ldots\left[\text { as, } n=2^{2^{k}} \text { and } S(n)=\frac{T(n)}{n}\right]
$$

Marking Scheme:

- Two substitutions made and Expansions shown = 2-marks
- Final closed-form obtained $=2$-marks (deduct 1 -mark if $d=0$ case not shown)
- Θ-notation provided $=2$-marks (deduct 1 -mark if $d=0$ case not shown)

Q2. Let \mathcal{A} be an $n \times n$ two-dimensional array with all distinct elements, in which all rows and all columns are sorted in ascending order from smaller to larger indices. Given a key x, your task is to find out whether x is present in \mathcal{A}.
(i) Propose a recursive formulation to solve this, from which you can design a $\Theta\left(n \log _{2} n\right)$-time algorithm.
(ii) Propose an efficient recursive formulation to solve this, from which you can design a $O(n)$-time algorithm.

In both the above cases (separately), develop the recurrence relations from your recursive formulations and finally solve these to deduce the above-mentioned time-complexity of the algorithms.
[Marks: 4 + $6=10$]

Solution:

(i) We can perform binary search in each row (or column). The recursive formulation of the solution will be as follows:

```
found = array_search (A[][], row, col, x)
{ if (row == 0), then return FALSE.
    call Binary_Search over A[row][] elements to find x.
    if (x is present inside A[row][] elements), then return TRUE.
    else, return array_search (A[][], row-1, col, x). }
```

Initially, we call this recursive definition as follows: array_search (A, $n, n, x)$. In general, the recurrence relation for an $n \times m$ two-dimensional array gives, $T(n, m)=T(n-1, m)+\Theta\left(\log _{2} m\right)$ and $T(0, m)=\Theta(1) . \quad \therefore T(n, m)=\Theta\left(n \log _{2} m\right)$. Here, since $m=n$, so $T(n, n)=\Theta\left(n \log _{2} n\right)$.
This observation also leads to the following simple iterative algorithm:

```
Initialize flag = 0 (flag indicates whether element x is found or not).
loop over each row r from 1 to n {
    flag = Binary_Search (A[r][], 1, n, x).
    if (flag == 1), return TRUE. else, increment r by 1.
}
if (flag == 0), return FALSE.
```

In the worst case (when the element is not found in \mathcal{A}), n number of binary-search operations are required and each binary-search operation takes $\Theta\left(\log _{2} n\right)$ time. So, the time-complexity of the proposed algorithm is $\Theta\left(n \log _{2} n\right)$.
(ii) Let $\langle r o w, \operatorname{col}\rangle$ be an index in \mathcal{A}. If $x=\mathcal{A}[r o w][\mathrm{col}]$, the search succeeds. If $x>\mathcal{A}[r o w][\mathrm{col}]$, we can discard the left of the current row. Finally, if $x<\mathcal{A}[r o w][$ col $]$, we can discard the lower part of the current column. The recursive formulation of the solution will be as follows:

```
found = array_search (A[][], n, row, col, x)
{ if (row > n) or (col < 1), then return FALSE.
    if (x == A[row][col]), then return TRUE.
    if (x > A[row][col]), then return array_search (A, n, row+1, col, x).
    else, return array_search (A, n, row, col-1, x).
```

Initially, we call this recursive definition as follows: array_search (A, $n, 1, n, x)$.
In general, the recurrence relation for an $n \times m$ two-dimensional array gives,
$T(n, m)=\operatorname{MAX}[\{T(n-1, m)+O(1)\},\{T(n, m-1)+O(1)\}]$ and $T(0, i)=T(i, 0)=O(1)(\forall i, 1 \leq i \leq n)$.
$\therefore T(n, m)=O(n+m)$. Here, since $m=n$, so $T(n, n)=O(n)$.
This observation also leads to the following simple iterative algorithm:

```
Initialize row = 1 and col = n (top-right corner of the matrix).
loop forever {
    if (row > n) or (col < 1), return FALSE.
    if (x == A[row][col]), return TRUE.
    if (x > A[row][col]), increment row by 1. else, decrement col by 1.
}
```

In the worst case (when the element is not found in \mathcal{A}), the number of comparisons required is $2 n$. So, the time complexity of the proposed algorithm is $O(n)$.

Marking Scheme:

- Recursive formulation shown = 2-marks (for Solution-i) and + 4-marks (for Solution-ii)
- Time-complexity derived from recurrences = 2-marks (for Solution-i) and + 2-marks (for Solution-ii)

