Indian Institute of Technology Kharagpur
Department of Computer Science and Engineering

Algorithms-I (CS21003) Class Test — 1 Solutions [Maximum Marks: 20] Spring Semester, 2019-2020
Date: 03-Feb-2020 (Monday) | Time: 7:00pm —8:00pm | Venue: F-116/F-142

Name: Roll No:

[Instructions: Write your answers in proper places mentioned in the question paper itself. Answer ALL questions.
Be brief and precise. If you use any algorithm/result/formula covered in class, just mention it, do not elaborate.]

Q1. Let two recursive algorithms satisfy the following two recurrence relations:

n : d :
@T@){iﬂﬂ+”’$221 and (me){gﬁﬂ¢m+”k&"’gzzg(dzm

Deduce the running time 7'(n) in asymptotic ©-notation for both of these cases separately. [Marks: 4+ 6 =10]

)

Solution:

(i) Giventhat, T'(n)=3.1(5)+n and T(1)=1.

o n 3 an n B ok T
— T)= 3*T(1)+nk = n+nlogzn = O(nlogyn) [assuming, n = 3"]
Marking Scheme:

e Expansions / Calculations shown = 2-marks

e Final closed-form computed = 1-mark

e O-notation provided = 1-mark

(i) Giventhat, T'(n) = /n.T(y/n)+n.login (whered >0) and T(2)=2.
T
= % = (\\//ﬁﬁ) +login ... [diving both sides by n ']
d : T(n)
= Sn)= SH/n)+loggn [assuming, S(n) = —=]
n
— 522" = 5(22(%1)) + (Qk)d [substituting, n = 22k]
— R(k)= RE-1+2H" ... [let, R(k) = S(22)]
— Rk)= RO)+H +0@H) +- 1) @)t [because, (2F)" = 2kd = (29)"]
b i T(2) 0
= Rk)= 1+ (29 ... [5(2) = =~ =1 implying R(0) = 5(27) = 1]
i=1
(2d)(1€+1)_1 .
— R(k) = g, ifd>0
1+k ifd=0

(Qd)(k+1)_1

: _ kdy
Hence, R(k) = 5(22’“) - 5a1 =0(2"), ifd>0
1+k =0(k), ifd=0

O(logln), ifd>0
O(logylogyn), ifd=0

O(n.logdn), ifd>0

which means, S(n) = { implying, T(n) = { O(n.log, log, n). ifd— 0

...... [as, n = 92" and S(n) = @]
Marking Scheme:
e Two substitutions made and Expansions shown = 2-marks
e Final closed-form obtained = 2-marks (deduct 1-mark if d = 0 case not shown)
e O-notation provided = 2-marks (deduct 1-mark if d = 0 case not shown)

Q2. Let A be ann x n two-dimensional array with all distinct elements, in which all rows and all columns are sorted in
ascending order from smaller to larger indices. Given a key x, your task is to find out whether x is present in 4.

(i) Propose a recursive formulation to solve this, from which you can design a ©(n log, n)-time algorithm.
(ii) Propose an efficient recursive formulation to solve this, from which you can design a O(n)-time algorithm.

In both the above cases (separately), develop the recurrence relations from your recursive formulations and finally
solve these to deduce the above-mentioned time-complexity of the algorithms. [Marks: 4 + 6 = 10]

Solution:

(i) We can perform binary search in each row (or column). The recursive formulation of the solution will be as follows:

found = array_search (A[][], row, col, Xx)

{ if (row == 0), then return FALSE.
call Binary_Search over A[row][] elements to find x.
if (x is present inside A[row] [] elements), then return TRUE.
else, return array_search (A[][], row-1, col, x). }

Initially, we call this recursive definition as follows: array_search (A, n, n, x).

In general, the recurrence relation for an n x m two-dimensional array gives, T'(n, m) = T'(n — 1, m) + O (log, m)
and T(0,m) = O(1). ..T(n,m)=0(nlogy,m). Here,sincem =n,soT(n,n)=0O(nlogyn).

This observation also leads to the following simple iterative algorithm:

Initialize flag = 0 (flag indicates whether element x is found or not).
loop over each row r from 1 to n {
flag = Binary_Search (A[r][], 1, n, x).
if (flag == 1), return TRUE. else, increment r by 1.
}
if (flag == 0), return FALSE.

In the worst case (when the element is not found in .A), n number of binary-search operations are required and each
binary-search operation takes ©(log, n) time. So, the time-complexity of the proposed algorithm is ©(n log, n).

(i) Let (row,col) be an index in A. If & = Alrow][col], the search succeeds. If z > A[row][col], we can discard
the left of the current row. Finally, if x < A[row][col], we can discard the lower part of the current column. The
recursive formulation of the solution will be as follows:

found = array_search (A[][], n, row, col, x)

{ if (row > n) or (col < 1), then return FALSE.
if (x == A[row] [col]), then return TRUE.
if (x > A[row] [col]), then return array_search (A, n, row+tl, col, x).
else, return array_search (A, n, row, col-1, x).

Initially, we call this recursive definition as follows: array_search (A, n, 1, n, x).

In general, the recurrence relation for an n X m two-dimensional array gives,

T(n,m) = MAX [{T(n—l,m)+0(1) }, {T(n,m—-1)+0(1) }} and 7(0,i) = T(:,0) = O(1) (Vi, 1 <i < n).
2. T(n,m)=0(n+m). Here,sincem =n,soT(n,n)=0(n).

This observation also leads to the following simple iterative algorithm:

Initialize row = 1 and col = n (top—-right corner of the matrix).
loop forever {
if (row > n) or (col < 1), return FALSE.
if (x == [row] [col]), return TRUE.
if (x > Alrow] [col]), increment row by 1. else, decrement col by 1.

}

In the worst case (when the element is not found in .A), the number of comparisons required is 2n. So, the time
complexity of the proposed algorithm is O(n).

Marking Scheme:
e Recursive formulation shown = 2-marks (for Solution-i) and + 4-marks (for Solution-ii)
e Time-complexity derived from recurrences = 2-marks (for Solution-i) and + 2-marks (for Solution-ii)

