
Indian Institute of Technology Kharagpur

Department of Computer Science and Engineering

Algorithms-I (CS21003) Class Test – 1 Solutions [Maximum Marks: 20] Spring Semester, 2019-2020

Date: 03-Feb-2020 (Monday) | Time: 7:00pm – 8:00pm | Venue: F-116 / F-142

Name: __ Roll No: ____________________

[Instructions: Write your answers in proper places mentioned in the question paper itself. Answer ALL questions.

Be brief and precise. If you use any algorithm/result/formula covered in class, just mention it, do not elaborate.]

Q1. Let two recursive algorithms satisfy the following two recurrence relations:

(i) T (n) =

{

3.T (n3) + n, if n > 1
1 , if n = 1

and (ii) T (n) =

{ √
n.T (

√
n) + n. logd2 n, if n > 2

2 , if n = 2
(d ≥ 0)

Deduce the running time T (n) in asymptotic Θ-notation for both of these cases separately. [Marks: 4 + 6 = 10]

Solution:

(i) Given that, T (n) = 3.T (n3) + n and T (1) = 1.

=⇒ T (n) = 32.T (
n

32
) + 3.

n

3
+ n = 33.T (

n

33
) + 32.

n

32
+ 3.

n

3
+ n = · · · = 3k.T (

n

3k
) + n.k

=⇒ T (n) = 3k.T (1) + n.k = n+ n. log3 n = Θ(n log2 n) [assuming, n = 3k]

Marking Scheme:

• Expansions / Calculations shown = 2-marks

• Final closed-form computed = 1-mark

• Θ-notation provided = 1-mark

(ii) Given that, T (n) =
√
n.T (

√
n) + n. logd2 n (where d ≥ 0) and T (2) = 2.

=⇒ T (n)
n

=
T (

√
n)√
n

+ logd2 n [diving both sides by n]

=⇒ S(n) = S(
√
n) + logd2 n [assuming, S(n) =

T (n)

n
]

=⇒ S(22
k

) = S(22
(k−1)

) + (2k)
d

. [substituting, n = 22
k

]

=⇒ R(k) = R(k − 1) + (2k)
d

. [let, R(k) = S(22
k

)]

=⇒ R(k) = R(0) + (2d)
1
+ (2d)

2
+ · · ·+ (2d)

k−1
+ (2d)

k

. [because, (2k)
d

= 2kd = (2d)
k

]

=⇒ R(k) = 1 +

k
∑

i=1

(2d)
i

. [S(2) =
T (2)

2
= 1 , implying R(0) = S(22

0

) = 1]

=⇒ R(k) =

{

(2d)
(k+1)

−1
2d−1

, if d > 0

1 + k, if d = 0

Hence, R(k) = S(22
k

) =

{

(2d)
(k+1)

−1
2d−1 = Θ(2kd), if d > 0

1 + k = Θ(k), if d = 0

which means, S(n) =

{

Θ(logd2 n), if d > 0
Θ(log2 log2 n), if d = 0

implying, T (n) =

{

Θ(n. logd2 n), if d > 0
Θ(n. log2 log2 n), if d = 0

. [as, n = 22
k
and S(n) = T (n)

n
]

Marking Scheme:

• Two substitutions made and Expansions shown = 2-marks

• Final closed-form obtained = 2-marks (deduct 1-mark if d = 0 case not shown)

• Θ-notation provided = 2-marks (deduct 1-mark if d = 0 case not shown)

1

Q2. Let A be an n× n two-dimensional array with all distinct elements, in which all rows and all columns are sorted in

ascending order from smaller to larger indices. Given a key x, your task is to find out whether x is present in A.

(i) Propose a recursive formulation to solve this, from which you can design a Θ(n log2 n)-time algorithm.

(ii) Propose an efficient recursive formulation to solve this, from which you can design a O(n)-time algorithm.

In both the above cases (separately), develop the recurrence relations from your recursive formulations and finally

solve these to deduce the above-mentioned time-complexity of the algorithms. [Marks: 4 + 6 = 10]

Solution:

(i) We can perform binary search in each row (or column). The recursive formulation of the solution will be as follows:

found = array_search (A[][], row, col, x)

{ if (row == 0), then return FALSE.

call Binary_Search over A[row][] elements to find x.

if (x is present inside A[row][] elements), then return TRUE.

else, return array_search (A[][], row-1, col, x). }

Initially, we call this recursive definition as follows: array_search (A, n, n, x).

In general, the recurrence relation for an n×m two-dimensional array gives, T (n,m) = T (n− 1,m)+Θ(log2 m)
and T (0,m) = Θ(1). ∴ T (n,m) = Θ(n log2 m). Here, since m = n, so T (n, n) = Θ(n log2 n).

This observation also leads to the following simple iterative algorithm:

Initialize flag = 0 (flag indicates whether element x is found or not).

loop over each row r from 1 to n {

flag = Binary_Search (A[r][], 1, n, x).

if (flag == 1), return TRUE. else, increment r by 1.

}

if (flag == 0), return FALSE.

In the worst case (when the element is not found in A), n number of binary-search operations are required and each

binary-search operation takes Θ(log2 n) time. So, the time-complexity of the proposed algorithm is Θ(n log2 n).

(ii) Let 〈row, col〉 be an index in A. If x = A[row][col], the search succeeds. If x > A[row][col], we can discard

the left of the current row. Finally, if x < A[row][col], we can discard the lower part of the current column. The

recursive formulation of the solution will be as follows:

found = array_search (A[][], n, row, col, x)

{ if (row > n) or (col < 1), then return FALSE.

if (x == A[row][col]), then return TRUE.

if (x > A[row][col]), then return array_search (A, n, row+1, col, x).

else, return array_search (A, n, row, col-1, x). }

Initially, we call this recursive definition as follows: array_search (A, n, 1, n, x).

In general, the recurrence relation for an n×m two-dimensional array gives,

T (n,m) = MAX

[

{ T (n−1,m)+O(1) } , { T (n,m−1)+O(1) }
]

and T (0, i) = T (i, 0) = O(1) (∀i, 1 ≤ i ≤ n).

∴ T (n,m) = O(n+m). Here, since m = n, so T (n, n) = O(n).

This observation also leads to the following simple iterative algorithm:

Initialize row = 1 and col = n (top-right corner of the matrix).

loop forever {

if (row > n) or (col < 1), return FALSE.

if (x == A[row][col]), return TRUE.

if (x > A[row][col]), increment row by 1. else, decrement col by 1.

}

In the worst case (when the element is not found in A), the number of comparisons required is 2n. So, the time

complexity of the proposed algorithm is O(n).

Marking Scheme:

• Recursive formulation shown = 2-marks (for Solution-i) and + 4-marks (for Solution-ii)

• Time-complexity derived from recurrences = 2-marks (for Solution-i) and + 2-marks (for Solution-ii)

2

