CS19003: Programming and Data Structures Laboratory

Aritra Hazra, CSE Dept., IIT Kharagpur

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Spring2021/

20-Apr-2021

Iterative execution (Loops)

The while loop
while (condition)
$\{$
execute loop body; \}

GCD by repeated division

$$
\begin{aligned}
& \text { while }(b>0) \\
& \left\{\begin{aligned}
\{ & =a \% b ; \\
a & =b ; \\
b & =r ;
\end{aligned}\right. \\
& \} \\
& \text { printf }\left(" g c d=\% d \backslash n^{\prime \prime}, a\right) ;
\end{aligned}
$$

Iterative execution (Loops)

The for loop

for (initialize; condition; increment)
\{
execute loop body;
\}
$N^{\text {th }}$ harmonic number $H(n)=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}$

$$
\begin{aligned}
& H=0 ; \\
& \text { for }(i=1 ; i<=n ;++i) H+=1.0 / i ; \\
& \quad \text { printf }(" H(\% d)=\% f \backslash n ", n, H) ;
\end{aligned}
$$

Iterative execution (Loops)
The Fibonacci numbers

$$
F_{n}=F_{n-1}+F_{n-2} \text { for } n \geq 2, F_{1}=1, F_{0}=0
$$

While

For

$$
\begin{aligned}
& i=1, F=1 ; p 1=0 ; p 1=0, F=1 ; \\
& \text { while (i < n) } \\
& \{ \\
& \text { ++i; } \\
& \text { pf = pf; } \\
& \mathrm{p} 1=\mathrm{F} \text {; } \\
& \mathrm{F}=\mathrm{p} 1+\mathrm{p} 2 ;
\end{aligned}
$$

\}
printf("F(\%d)=\%d",n,F); //for both programs

Loop flow control

- A loop may be conditionally broken from inside

```
while (1)
{
    if (b == 0) break;
    r = a % b;
    a = b;
    b = r;
}
printf("gcd = %d\n", a);
```


Loop flow control

- A loop iteration may be conditionally skipped
- Ex: Printing $1,2, \ldots, 100$ neatly with 10 integers per line

```
for (i=1; i<=100; ++i) {
    printf("%4d",i);
    if (i%10 != 0) continue;
printf("\n");
}
```


Debugging you program: removing logical errors

- First look at your program and see if you can find some obvious logical errors. If found, correct and retry
- If it is not immediately evident, take some (small) input, work out by hand what the values of your variables should be after each step logically
- Put printf statements at those steps and find the first step the program prints a wrong value. Keep repeating until all mistakes are corrected

Bug Localization

void main()
$\{$

$$
\begin{aligned}
& \text { int } \mathrm{k}=2, \mathrm{n}=1 \text {; } \\
& \text { while }(\mathrm{k}<7)\{ \\
& \mathrm{n}=\mathrm{n} * \mathrm{k} ; \\
& \mathrm{k}++
\end{aligned}
$$

- Program hangs, second

Aritra Hazra,
CSE Dept., IIT

$$
\}
$$

```
printf("After loop 1\n"); /*printf for deb while (k ! = 21) \{
```

$$
\mathrm{n}=\mathrm{n}+\mathrm{k} ;
$$

$$
\mathrm{k}=\mathrm{k}+2
$$

\}/* do not miss $\backslash \mathrm{n}$ in debug printf */ printf("After loop $2 \backslash n ")$; /*printf for debugging*/ printf("n is \%d\n", n);

GCD: erroneous implementations

Correct

always $o / p=0$

```
while (1)
{
    if (b == 0) break ;
    r = a % b;
    a = b;
    b = r;
}
```

while (1)
\{
if (b == 0) break ;
$r=a \% b ;$
$\mathrm{b}=\mathrm{r}$;
$\mathrm{a}=\mathrm{b}$;
\}
/*last 2 statements exchanged*/
o / p is in ' a '. In R.H.S program, $a=0$ due to the chaining effect when ' r ' is 0

Debugging a single block

Executing the correct program with $a=45, b=12$

```
while (1)
{
```

 if (\(b==0\)) break ;
 \(r=a \%\) b; /* iter 1 values*/
 printf ("a=\%d,b=\%d,r=\%d\n");/*45,12,9*/
 \(\mathrm{a}=\mathrm{b}\);
 printf ("a=\%d,b=\%d,r=\%d\n"); /* 12, 12, \(9 * /\)
 \(\mathrm{b}=\mathrm{r}\);
 printf ("a=\%d, b=\%d,r=\%d\n"); /*12, 9, 9*/
 \}
 printf ("gcd = \%d\n", a) ;
 We expect \(a=\) old value of \(b=12, b=r=a \% b=9\)
 so, this is fine

Debugging a single block

Executing the incorrect program with $a=45, b=12$

$$
\text { \} }
$$

printf ("gcd = \%d\n", a) ;
We expect $a=$ old value of $b=12, b=r=a \% b=9$
Only r is assigned correctly, problem with code after $r=a \% b$

$$
\begin{aligned}
& \text { while (1) } \\
& \text { \{ } \\
& \text { if (b==0) break ; } \\
& \text { r = a \% b; /* iter } 1 \text { values*/ } \\
& \text { printf("a=\%d,b=\%d,r=\%d\n"); /* 45,12,9*/ } \\
& \text { b = r; } \\
& \text { printf("a=\%d,b=\%d,r=\%d\n"); /* 45, 9,9*/ } \\
& \mathrm{a}=\mathrm{b} \text {; } \\
& \text { printf("a=\%d,b=\%d,r=\%d\n"); /* 9, 9,9*/ }
\end{aligned}
$$

GCD: some more erroneous implementations :)

Infinite loop

while (1)
\{

$r=a \% b ;$
$\mathrm{a}=\mathrm{b}$;
$\mathrm{b}=\mathrm{a}$;
\}
$/ * b=a \quad b y$ mistake*/

Divide by zero

```
while (1)
{
    if (a == 0) break ;
    r = a % b;
    a = b;
    b = r;
}
/*a==0 by mistake*/
```


Nested loop:

int i, j;
/* print header line: */
Aritra Hazra,
CSE Dept., IIT
printf (" ") ;
for $(j=1 ; j<=10 ; j=j+1)$ printf(" \%3d", j);
printf ("\n") ;
/* print table: */
$\operatorname{for}(i=1 ; i<=10 ; i=i+1)$
\{
printf ("\%2d", i); for $(j=1 ; j<=10 ; j=j+1)$ printf (" $\left.\% 3 d^{\prime \prime}, i+j\right)$; printf ("\n") ;
\}
return 0;

Output table

	1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10	11
2	3	4	5	6	7	8	9	10	11	12
3	4	5	6	7	8	9	10	11	12	13
4	5	6	7	8	9	10	11	12	13	14
5	6	7	8	9	10	11	12	13	14	15
6	7	8	9	10	11	12	13	14	15	16
7	8	9	10	11	12	13	14	15	16	17
8	9	10	11	12	13	14	15	16	17	18
9	10	11	12	13	14	15	16	17	18	19
10	11	12	13	14	15	16	17	18	19	20

Make a simple modification to the program to print a multiplication table, or a subtraction table

break statement in loop nest

```
void main()
{
    int low, high, desired, i, flag = 0;
    scanf("%d %d %d", &low, &high,&desired);
    i = low;
    while (i < high) {
    for (j = i+1; j <= high; ++j) {
        if (j % i == desired) {
                        flag = 1;
                            break; //breaks from for loop
        }
        }
        if (flag == 1) break;
        i = i + 1; //breaks from while loop
    }
}
```


Thank You

