
CS19001:
Programming and
Data Structures

Laboratory

Aritra Hazra;
CSE, IIT
Kharagpur

CS19001: Programming and Data

Structures Laboratory

Aritra Hazra;
CSE, IIT Kharagpur

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2019/

08-Nov-2019

Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2019/


CS19001:
Programming and
Data Structures

Laboratory

Aritra Hazra;
CSE, IIT
Kharagpur

Sorting

Suppose you have an array A[ ] of n elements (say,
integers). They are stored in the array locations,

A[0],A[1], . . . ,A[i ], . . . ,A[n − 1]

We want to rearrange these integers in such a way that
after the rearrangement, we have either of the following:

A[0] ≤ A[1] ≤ · · · ≤ A[i ] ≤ · · · ≤ A[n − 1]

A[0] ≥ A[1] ≥ · · · ≥ A[i ] ≥ · · · ≥ A[n − 1]

Then, the resultant array is called sorted in either
ascending or descending order, respectively.

There are many such sorting methods. Bubble-sort and
Selection-sort are two among them.

Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory



CS19001:
Programming and
Data Structures

Laboratory

Aritra Hazra;
CSE, IIT
Kharagpur

Bubble-sort (in ascending order)

Code

for (i=n-2; i>=0; --i)

{

for (j=0; j<=i; ++j)

{

if (A[j] > A[j+1])

{

t = A[j];

A[j] = A[j+1];

A[j+1] = t;

}

}

}

Working Principle

A[4] = {4,3,2,1}
i,j: A → A′

bubble till position
i=4-2=2.
2,0: 4,3,2,1 → 3,4,2,1
2,1: 3,4,2,1 → 3,2,4,1
2,2: 3,2,4,1 → 3,2,1,4
bubble till position i=1
1,0: 3,2,1,4 → 2,3,1,4
1,1: 2,3,1,4 → 2,1,3,4
bubble till position i=0
0,0: 2,1,3,4 → 1,2,3,4

Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory



CS19001:
Programming and
Data Structures

Laboratory

Aritra Hazra;
CSE, IIT
Kharagpur

Selection-sort (in ascending order)

Code

for (i=n-1; i>0; --i)

{

m = i;

for (j=0; j<i; ++j)

{

if (A[j] > A[m])

m = j;

}

t = A[i];

A[i] = A[m];

A[m] = t;

} // Why swap if i=m?

Working Principle

A[4] = {4,3,2,1}
i = 3 → m = 3

j = 0: m = 0
j = 1: m = 0
j = 2: m = 0

A[4] = {1,3,2,4}
i = 2 → m = 2

j = 0: m = 2
j = 1: m = 1

A[4] = {1,2,3,4}
i = 1 → m = 1

j = 0: m = 1
A[4] = {1,2,3,4}

Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory



CS19001:
Programming and
Data Structures

Laboratory

Aritra Hazra;
CSE, IIT
Kharagpur

Searching

Suppose you have an array A[ ] of n elements (say,
integers). They are stored in the array locations,

A[0],A[1], . . . ,A[i ], . . . ,A[n − 1]

We want to search/report the location/index of a
particular value, say v , from this array of integers.

We report the index ‘k ’ (0 ≤ k < n), if A[k] = v .
Otherwise, we may report ‘−1’ to denote that the
searched element, v , is not found.

Given an unordered array, you have to compare each
element of the array sequentially to find the index,

For all i (0 ≤ i < n), whether A[i ] = v?

However, for ordered (ascending / descending) arrays,
things are more exciting! We shall study these variants.

Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory



CS19001:
Programming and
Data Structures

Laboratory

Aritra Hazra;
CSE, IIT
Kharagpur

Searching in an Unordered Array

Forward-Iteration

for (i=0; i<n; ++i)

if(A[i] == v)

break ;

// Answer : found at i

if(i == n) i = -1;

// Answer : not found

Backward-Iteration

for (i=n -1; i >=0; --i)

if(A[i] == v)

break ;

// Answer : found at i

Recursive-Code

int seqSr ( int A[], int n,

int v )

{

if (n > 0)

{

if(A[n-1] == v)

return n-1;

else

return (seqSr(A,n-1,v));

}

else

{

return -1;

}

}

Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory



CS19001:
Programming and
Data Structures

Laboratory

Aritra Hazra;
CSE, IIT
Kharagpur

Searching in an Ordered Array

Idea of Binary Search:
Consider a sorted array A and an element (say v) as input.
The goal is to report whether the element is present in the
array and in that case what is the corresponding array index.

Choose the middle element A[n2 ]

If v == A[n2 ], we are done

If v < A[n2 ], search for v between A[0] and A[n2 − 1]

If v > A[n2 ], search for v between A[n2 + 1] and A[n− 1]

Repeat until v is found or no more elements remain to
be searched.

We consider three variables first, last and mid pointing to
array beginning, end and middle respectively. We keep on
updating these three elements in each iteration recursively.

Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory



CS19001:
Programming and
Data Structures

Laboratory

Aritra Hazra;
CSE, IIT
Kharagpur

Searching in an Ordered Array

Binary Search

int binSr ( int A[], int v,

int si, int ei )

{

int mi;

if (si <= ei)

{

mi = (si+ei )/2;

if(A[mi] > v)

return binSr(A,v,si ,mi -1);

else if (A[mi] < v)

return binSr(A,v,mi+1, ei);

else

return mi;

}

else

return -1;

}

Working Principle
Ex-1: A[5] = {1, 2, 3, 4, 5}; v = 2

si=0, ei=4; mi=(0+4)/2=2
A[ ] = {1, 2, 3, 4, 5}; A[2]=3(>2)
si=0, ei=mi-1=1; mi=0
A[ ] = {1, 2}, 3, 4, 5}; A[0]=1(<2)
si=mi+1=1, ei=1; mi=1
A[ ] = {1, {2}, 3, 4, 5}; A[1]=2

Ex-2: A[5] = {1, 2, 3, 4, 5}; v = 0

si=0, ei=4; mi=(0+4)/2=2
A[ ] = {1, 2, 3, 4, 5}; A[2]=3(>0)
si=0, ei=mi-1=1; mi=0
A[ ] = {1, 2}, 3, 4, 5}; A[0]=1(>0)
si=0, ei=mi-1=-1
A[ ] = {1, 2, 3, 4, 5}; not-found(-1)

Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory



CS19001:
Programming and
Data Structures

Laboratory

Aritra Hazra;
CSE, IIT
Kharagpur

Variants of Binary Search
Variant-1: [a/b partition]
1/3 ∼ 2/3 partition – Break the array (of size n) into two parts (of size
n
3
and 2n

3
), instead of breaking into two equal size halves.

Choose the 1
3
-rd element A[ n

3
]

If v == A[ n
3
], we are done [1 comparison]

If v < A[ n
3
], search for v between A[0] and A[ n

3
− 1]

If v > A[ n
3
], search for v between A[ n

3
+ 1] and A[n − 1]

Repeat until v is found or no more elements remain for searching.

Variant-2: [d-ary partition]
3-ary 1/3 partitions – Break the array (of size n) into three equal parts
(of size n

3
each), instead of breaking into two equal size halves.

Choose the 1
3
-rd and 2

3
-rd element A[ n

3
] and A[ 2n

3
], respectively.

If (v == A[ n
3
]) or (v == A[ 2n

3
]), we are done [2 comparisons]

If v < A[ n
3
], search for v between A[0] and A[ n

3
− 1]

If A[ n
3
] < v < A[ 2n

3
], search for v between A[ n

3
+ 1] and A[ 2n

3
]− 1]

If v > A[ 2n
3
], search for v between A[ 2n

3
+ 1] and A[n − 1]

Repeat until v is found or no more elements remain for searching.

Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory



CS19001:
Programming and
Data Structures

Laboratory

Aritra Hazra;
CSE, IIT
Kharagpur

Number of Comparisons in Binary Search
Let, C(n) = Max. no. of comparisons required for searching from n elements
Binary Search: [1/2 partition]

C(n) = C(
n

2
) + 1 = C(

n

22
) + (1 + 1) = C(

n

23
) + (1 + 1 + 1)

= · · · = C(
n

2k
) + k = 1 + k = 1 + log2 n [w/o l .o.g ., n = 2k ]

Binary Search (Variant-1): [1/3 ∼ 2/3 partition]

C(n) = C(
2n

3
) + 1 = C(

n

( 3
2
)2

) + (1 + 1) = C(
n

( 3
2
)3

) + (1 + 1 + 1)

= · · · = C(
n

( 3
2
)k

) + k = 1+ k = 1 + log 3
2
n [w/o l .o.g ., n = (

3

2
)k ]

Binary Search (Variant-2): [3-ary 1/3 partitions]

C(n) = C(
n

3
) + 2 = C(

n

32
) + (2 + 2) = C(

n

33
) + (2 + 2 + 2)

= · · · = C(
n

3k
) + 2k = 1 + 2k = 1 + 2 log3 n [w/o l .o.g ., n = 3k ]

Please Note, log2 n ≤ log 3
2
n ≤ log b

a
n & log2 n ≤ 2 log3 n ≤ (d − 1) logd n

Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory



CS19001:
Programming and
Data Structures

Laboratory

Aritra Hazra;
CSE, IIT
Kharagpur

Thank You

Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory


