
Linked Lists and ADT

Aritra Hazra

Department of Computer Science & Engineering,
Indian Institute of Technology Kharagpur,
Paschim Medinipur, West Bengal, India – 721302.

CS19001: Programming and Data Structures Laboratory

25-Oct-2019

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2019/

© Aritra Hazra; CSE, IIT Kharagpur

❑  A list refers to a sequence of data items
■  Example: An array

●  Array index is used for accessing and manipulating array elements
■  Problems with arrays

●  Array size specified at the beginning (at least during dynamic allocation)
▪  realloc can be used to readjust size in middle, but contiguous

chunk of memory may not be available
●  Deleting / Inserting an element may require shifting of elements
●  Wasteful of space

❑  A completely different way to represent a list (Linked List)
■  Make each data in the list part of a self-referential structure
■  The structure also contains a pointer or link to the structure (of the same

type) containing the next data

Lists

Structure 1 Structure 2 Structure 3

data data data

2

© Aritra Hazra; CSE, IIT Kharagpur

❑  Let each structure of the list (lets call it node) have two fields:
■  One containing the data
■  Other containing address of the structure holding next data in the list

❑  The structures in the linked list need not be contiguous in memory
■  Ordered by logical links stored as part of data in the structure itself
■  The link is a pointer to another structure of the same type

❑  The pointer variable next contains either the address of the location in memory of
the successor list element or the special value NULL
■  NULL is used to denote the end of the list (no successor element)

Single Linked Lists

Definition of a Node:
typedef struct node {
 int data;
 struct node *next;
} llNode;
llNode *head, *prev, *cur;

Creation of a Node:
llNode *createNode(int item)
{
 llNode *new = (llNode *)malloc(sizeof(llNode));
 if(new ==NULL) printf(“Malloc Error!”);
 else {
 new->data = item; new->next = NULL;
 }
 return (new);
} NULL

3

data

node

next

© Aritra Hazra; CSE, IIT Kharagpur

Traversal of Linked Lists

4

15 NULL 18 12 15

Finding an Element in Single Linked List:
llNode *searchLL

 (llNode *head, int elm)
{
 llNode *cur = head;
 while(cur != NULL) {
 if(cur->data == elm)
 break;
 cur = cur->next;
 }
 return (cur);
}

head

Pointing Last Node in Single Linked List:
llNode *lastNodeLL(llNode *head)
{
 llNode *cur = head;
 if(cur != NULL) // no node
 while(cur->next != NULL)
 cur = cur->next;
 return (cur);
}

Last Node Recursive Printing of Elements:
void recPrintLL(llNode *head) {
 if(head != NULL){
 printf(“%d, ”, head->data);
 recPrintLL(head->next);
 printf(“%d, ”, head->data);
 }
}

Need to Traverse all
N elements in list

Forward Printing

Backward Printing
15, 18, 12, 15, 15, 12, 18, 15,

© Aritra Hazra; CSE, IIT Kharagpur

Insertion into Linked Lists

5

3 NULL 5 9 11 head

7

prev

new

Insert a new Node after prev Node:
void insertAfterLL
 (llNode *prev, llNode *new)
{
 new->next = prev->next;
 prev->next = new;
}

Insert a new Node in Front:
void *insertFrontLL
 (llNode **phead, llNode *new)
{
 new->next = (*phead);
 (*phead) = new;
}

3 NULL 5 7 9 head
&head

1 new

Insert After a Given Node

Insert as a Front Node

© Aritra Hazra; CSE, IIT Kharagpur

Deletion from Linked Lists

6

2 NULL 4 6 8 head

prev

Delete a Node after prev Node:
void deleteAfterLL(llNode *prev)
{
 if(prev->next != NULL)
 prev->next =
 (prev->next)->next;
}

Delete the Front Node:
void *deleteFrontLL(llNode **phead)
{
 if((*phead) != NULL)
 (*phead) = (*phead)->next;
}

2 NULL 4 6 8 head
&head

Delete After a Given Node

Delete the Front Node

2

head cur

4 8 X

llNode *deleteCurLL(llNode **phead)
{
 cur->data = (cur->next)->data;
 deleteAfterLL(cur);
} No need to traverse entire list

(except cur being Last Node!)

Delete Random (Current) Node

© Aritra Hazra; CSE, IIT Kharagpur

Variations of Linked Lists

❑  Single Linked List with Head and Tail Pointers

❑  Circular Linked List

❑  Double Linked List

❑  Circular Double Linked List

7

10 NULL 20 30 40 head

tail

10 20 30 40 head

10 20 30 40 X X head

data right left

10 20 30 40 head

© Aritra Hazra; CSE, IIT Kharagpur

Thank You!

8

