Linked Lists and ADT

CS19001: Programming and Data Structures Laboratory
25-Oct-2019

Aritra Hazra

Department of Computer Science & Engineering,
Indian Institute of Technology Kharagpur,

Paschim Medinipur, West Bengal, India - 721302.

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2019/

Lists I

 Alist refers to a sequence of data items
m Example: An array
e Array index is used for accessing and manipulating array elements
m Problems with arrays
e Array size specified at the beginning (at least during dynamic allocation)
= realloc can be used to readjust size in middle, but contiguous
chunk of memory may not be available
e Deleting / Inserting an element may require shifting of elements
e Wasteful of space
O A completely different way to represent a list (Linked List)
m Make each data in the list part of a self-referential structure
m The structure also contains a pointer or link to the structure (of the same
type) containing the next data

Structure 1 Structure 2 Structure 3

‘ data ‘O-I—b‘ data ‘Q-I—b‘ data 0—|—>

© Aritra Hazra; CSE, lIT Kharagpur 2

Single Linked Lists

1 Let each structure of the list (lets call it node) have two fields:
m One containing the data
m Other containing address of the structure holding next data in the list

 The structures in the linked list need not be contiguous in memory
m Ordered by logical links stored as part of data in the structure itself
m The link is a pointer to another structure of the same type
 The pointer variable next contains either the address of the location in memory of
the successor list element or the special value NULL
m NULL is used to denote the end of the list (no successor element)

Definition of a Node:
typedef struct node ({
int data;

struct node *next;
} 1llNode;
11Node *head, *prev, *cur;

o
Q
e~k
Q

Creation of a Node:
1l1lNode *createNode (int item)

{

1llNode *new = (llNode *)malloc(sizeof (1llNode)) ;
if (new ==NULL) printf (“Malloc Error!”);
else {

new->data = item; new->next = NULL;

}

return (new);

© Aritra Hazra; CSE, lIT Kharagpur

Traversal of Linked Lists

15 | —+— 18

head —»

—+—> 15 | =—NULL

12

Last Node

Recursive Printing of Elements:

void recPrintLL (llNode *head) {

if (head != NULL){ Forward Printing
printf (“*%d, ”, head->data);
recPrintLL (head->next) ;

head->data) ;
Backward Printing

15,12, 18, 15,

44

printf (“%d, ”,
}
} 15, 18, 12, 15,

Pointing Last Node in Single Linked List:
1ll1Node *lastNodelLL (llNode *head)

{

11Node *cur = head;
if (cur '= NULL) // no node
while (cur->next != NULL)

cur cur->next;
return (cur);

}

Finding an Element in Single Linked List:

11Node *searchLL

(11Node *head, int elm)

{

1l1Node *cur = head;

while (cur '= NULL) {
if (cur->data == elm)
break;
cur = cur->next;

}

return (cur);

Need to Traverse all
N elements in list

© Aritra Hazra; CSE, lIT Kharagpur

Insertion into Linked Lists

Insert After a Given Node

head —{ 3 ——> 5

4 1
V4
7
bet—p

prevl

9 ——{ 11 | —T—NULL

Insert a new Node after prev Node:
void insertAfterLL

(11Node *prev, llNode *new)
{

new->next = prev->next;

prev->next = new;

}

Insert a new Node in Front:

void *insertFrontLL
(l1Node **phead, l1llNode *new)

{

new->next = (*phead)
(*phead) = new;

}

head

&head — 3 | =T 5
\\\\ I‘
new —3# 1 'I

— 7 - 9 =r—>NULL

Insert as a Front Node

© Aritra Hazra; CSE, lIT Kharagpur

Deletion from Linked Lists

Delete After a Given Node prev !

head —» 2 —t> 4

L 6 | 4+— 8 | ——NULL

Delete a Node after prev Node:
void deleteAfterLL (l11lNode *prev)
{
if (prev->next != NULL)
prev->next =
(prev->next) ->next;

Delete the Front Node:
void *deleteFrontLL (llNode **phead)

{

if ((*phead) !'= NULL)

I \ 4
&headM 2 |1 4

(*phead) = (*phead)->next;
}
Delete the Front Node
—+— 6 |—+—| 8 |—T—NULL

Delete Random (Current) Node
headl
2 |1 4 |71 8 X

cur‘

11Node *deleteCurLL (llNode **phead)
{
cur->data = (cur->next)->data;

deleteAfterLL (cur) ;
} °0Q0

No need to traverse entire list
(except cur being Last Node!)

© Aritra Hazra; CSE, lIT Kharagpur

Variations of Linked Lists

 Single Linked List with Head and Tail Pointers

head —» 10 —t—> 20 —t—> 30 —t+—> 40 | —+—>NULL

1 Circular Linked List tailt

head —| 10 -t 20 —t— 30 -t 40 ——‘
1
(1 Double Linked List

head-»X 10| 20| T 30| T 40X

Ieftj d;ta right
(1 Circular Double Linked List

| l
head —slt [10 171 (20 [T (30| T |40

© Aritra Hazra; CSE, lIT Kharagpur

Thank You!

© Aritra Hazra; CSE, lIT Kharagpur

