
CS19001: Programming and Data Structures Laboratory
Lab Test – 1 (ODD-PC)
Date: 06-September-2019

Problem Statement A: [Building-Bridges] Marks: 35

Let a set of intervals is defined as, I = {[a1, b1]; [a2, b2]; . . . ; [an, bn]}, where ai ≤ bi, when 1 ≤ i ≤ n and
bi < ai+1, when 1 ≤ i < n (both ai and bi are integers within range [−109, 109] and n ≤ 105). This indicates
that each of the intervals are non-overlapping with the others and enjoys a monotonically increasing nature.

You are given with a set of n existing intervals, E , and another set of m new intervals, I, that you wish to
insert in the existing interval set. You have to write a C-program that generates the final interval set, F , by
inserting I into E . While inserting I into E , you must consider the overlapping (as well as subsuming) nature
of the intervals and produce the refined final set of intervals (following the above definition).

Your C-program needs to carry out the following steps:
• Take from user as input the number of existing intervals, i.e. n (an integer).
• Take from user each of the start (ai) and end (bi) values of these n existing intervals. Keep these into two

arrays (one for keeping the start values and the other for the keeping the end values).
• Take from user as input the number of new intervals, i.e. m (an integer).
• Take from user each of the start (ai) and end (bi) values of these m new intervals to be inserted. Keep

these into two arrays (one for keeping the start values and the other for the keeping the end values).
• Print the two user input interval sets in proper format (the existing and the new) by iterating over the

arrays where you kept the data.
• Insert all the m new intervals into the existing set of intervals.
• Print the final set of intervals after the insertion.

Example Inputs/Outputs A:

Sample-1:

Enter Number of Existing Intervals: 8

Enter 8 Existing Intervals:

Enter Interval-1: 4 7

Enter Interval-2: 9 10

Enter Interval-3: 13 14

Enter Interval-4: 20 21

Enter Interval-5: 24 28

Enter Interval-6: 31 33

Enter Interval-7: 34 36

Enter Interval-8: 39 41

Enter Number of New Intervals: 9

Enter 9 New Intervals to Insert:

Insert Interval-1: 1 2

Insert Interval-2: 5 6

Insert Interval-3: 12 15

Insert Interval-4: 17 18

Insert Interval-5: 23 25

Insert Interval-6: 27 29

Insert Interval-7: 32 35

Insert Interval-8: 38 40

Insert Interval-9: 42 45

++ Existing Intervals: [4, 7]; [9, 10]; [13, 14]; [20, 21];

[24, 28]; [31, 33]; [34, 36]; [39, 41];

++ Inserting Intervals: [1, 2]; [5, 6]; [12, 15]; [17, 18]; [23, 25];

[27, 29]; [32, 35]; [38, 40]; [42, 45];

++ Final Intervals: [1, 2]; [4, 7]; [9, 10]; [12, 15]; [17, 18];

[20, 21]; [23, 29]; [31, 36]; [38, 41]; [42, 45];

1

Sample-2:

Enter Number of Existing Intervals: 2

Enter 2 Existing Intervals:

Enter Interval-1: -10000 -100

Enter Interval-2: 10 1000000

Enter Number of New Intervals: 1

Enter 1 New Intervals to Insert:

Insert Interval-1: -100000000 1000000000

++ Existing Intervals: [-10000, -100]; [10, 1000000];

++ Inserting Intervals: [-100000000, 1000000000];

++ Final Intervals: [-100000000, 1000000000];

Sample-3:

Enter Number of Existing Intervals: 2

Enter 2 Existing Intervals:

Enter Interval-1: 1 3

Enter Interval-2: 6 9

Enter Number of New Intervals: 1

Enter 1 New Intervals to Insert:

Insert Interval-1: 3 6

++ Existing Intervals: [1, 3]; [6, 9];

++ Inserting Intervals: [3, 6];

++ Final Intervals: [1, 9];

Problem Statement B: [Snake-Rotation-Clockwise] Marks: 15

Write a C-program that does the following:
• It takes as input n non-negative integer array elements (1 ≤ n ≤ 105).
• It also takes as input a replication-number, m (1 ≤ m ≤ 105).
• It prints the replicated array entries (for same array) line-by-line m times. Printing in such a style looks

the output like an (m× n) matrix.

• Then, it prints all the elements of this (m × n) output spirally in Clockwise direction, starting from the
first element of top printed array and without repeating for any position during traversal.

Note: You are NOT allowed to use any extra array except the ONLY One-Dimensional input array required.

Example Inputs/Outputs B:

Sample-1:

Enter No. of Elements: 10

Enter 10 Array Elements: 0 1 2 3 4 5 6 7 8 9

Enter No. of Such Repeated Arrays: 5

++ The Replicated Set of Array Elements:

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

++ The Arrays Elements Together (Clock-wise Printing):

0 1 2 3 4 5 6 7 8 9 9 9 9 9 8 7 6 5 4 3 2 1 0 0 0 0 1 2 3 4 5 6 7 8 8 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7

Sample-2:

Enter No. of Elements: 2

Enter 2 Array Elements: 1 2

Enter No. of Such Repeated Arrays: 2

++ The Replicated Set of Array Elements:

1 2

1 2

++ The Arrays Elements Together (Clock-wise Printing):

1 2 2 1

Submit a single C source file for each problem. Do not use global/static variables.

2

