
CS19001: Programming and Data Structures Laboratory
Assignment No. 3A (Iterations and Looping)

Date: 23-August-2019

Problem Statement:

Madam Alice from Wonderland School wants to show the multiplication-table in her mathematics class. She
wants to automate that by writing a C-program that will produce the multiplication-table for any number of
entries (< 106) and upto any depth (< 106). Your task is to help Alice in writing this program which takes as
input the number of multiplication-table entries and the multiplication depth (both as positive integers). The
program outputs the multiplication-table in a structured format (refer to the sample cases below). However,
there is one twist in the program. This program also takes an additional input to consider the base-value
(decimal, binary, octal etc.) within [2− 10] and the multiplication-table data should be written considering this
base. You have to implement such a multiplication-table in two ways:

• Multiplicative Approach. You need to multiply each entry in the table with each depth iteratively and
provide the results after converting it under appropriate base-value from the decimal answer. For example,
when you are producing the table for entry 4 – then for depth 6, you obtain 4 ∗ 6 = 24; for depth 7, you
obtain 4 ∗ 7 = 28; and so on.

• Additive Approach. You are not allowed to multiply each entry with the depth, rather you can use repeated
addition to get the next depth result from the present depth result for an entry. For example, when you
are producing the table for entry 4 – then for depth 1, you start with 4 as the result; subsequently for
depth 2, you obtain 4 + 4 = 8; for depth 3, you obtain 8 + 4 = 12; and so on.

Finally, you have to convert the each of these results under appropriate base-value format as indicated. For
example, if you are specified with base 8 (octal number-system), then the result 28 in decimal will be written
as 34 (= 3× 81 + 4× 80) in the multiplication-table.

Example Inputs/Outputs:

Sample-1:

Enter Number of Multiplication Table Entries: 9

Enter Multiplication Depth: 7

Enter Base Value (within range [2-10]): 10

++ Multiplicative Approach ++

[1] ==> 1 2 3 4 5 6 7

[2] ==> 2 4 6 8 10 12 14

[3] ==> 3 6 9 12 15 18 21

[4] ==> 4 8 12 16 20 24 28

[5] ==> 5 10 15 20 25 30 35

[6] ==> 6 12 18 24 30 36 42

[7] ==> 7 14 21 28 35 42 49

[8] ==> 8 16 24 32 40 48 56

[9] ==> 9 18 27 36 45 54 63

++ Additive Approach ++

[1] ==> 1 2 3 4 5 6 7

[2] ==> 2 4 6 8 10 12 14

[3] ==> 3 6 9 12 15 18 21

[4] ==> 4 8 12 16 20 24 28

[5] ==> 5 10 15 20 25 30 35

[6] ==> 6 12 18 24 30 36 42

[7] ==> 7 14 21 28 35 42 49

[8] ==> 8 16 24 32 40 48 56

[9] ==> 9 18 27 36 45 54 63

1

Sample-2:

Enter Number of Multiplication Table Entries: 10

Enter Multiplication Depth: 6

Enter Base Value (within range [2-10]): 2

++ Multiplicative Approach ++

[1] ==> 1 10 11 100 101 110

[2] ==> 10 100 110 1000 1010 1100

[3] ==> 11 110 1001 1100 1111 10010

[4] ==> 100 1000 1100 10000 10100 11000

[5] ==> 101 1010 1111 10100 11001 11110

[6] ==> 110 1100 10010 11000 11110 100100

[7] ==> 111 1110 10101 11100 100011 101010

[8] ==> 1000 10000 11000 100000 101000 110000

[9] ==> 1001 10010 11011 100100 101101 110110

[10] ==> 1010 10100 11110 101000 110010 111100

++ Additive Approach ++

[1] ==> 1 10 11 100 101 110

[2] ==> 10 100 110 1000 1010 1100

[3] ==> 11 110 1001 1100 1111 10010

[4] ==> 100 1000 1100 10000 10100 11000

[5] ==> 101 1010 1111 10100 11001 11110

[6] ==> 110 1100 10010 11000 11110 100100

[7] ==> 111 1110 10101 11100 100011 101010

[8] ==> 1000 10000 11000 100000 101000 110000

[9] ==> 1001 10010 11011 100100 101101 110110

[10] ==> 1010 10100 11110 101000 110010 111100

Sample-3:

Enter Number of Multiplication Table Entries: 8

Enter Multiplication Depth: 8

Enter Base Value (within range [2-10]): 8

++ Multiplicative Approach ++

[1] ==> 1 2 3 4 5 6 7 10

[2] ==> 2 4 6 10 12 14 16 20

[3] ==> 3 6 11 14 17 22 25 30

[4] ==> 4 10 14 20 24 30 34 40

[5] ==> 5 12 17 24 31 36 43 50

[6] ==> 6 14 22 30 36 44 52 60

[7] ==> 7 16 25 34 43 52 61 70

[8] ==> 10 20 30 40 50 60 70 100

++ Additive Approach ++

[1] ==> 1 2 3 4 5 6 7 10

[2] ==> 2 4 6 10 12 14 16 20

[3] ==> 3 6 11 14 17 22 25 30

[4] ==> 4 10 14 20 24 30 34 40

[5] ==> 5 12 17 24 31 36 43 50

[6] ==> 6 14 22 30 36 44 52 60

[7] ==> 7 16 25 34 43 52 61 70

[8] ==> 10 20 30 40 50 60 70 100

Submit a single C source file. Do not use global/static variables.

2

CS19001: Programming and Data Structures Laboratory
Assignment No. 3B (Iterations and Looping)

Date: 23-August-2019

Problem Statement:

Madam Alice from Wonderland School wants to show in her mathematics class how the multiplication for two
big numbers is computed using naïve school-book method. In this approach, Alice multiplies the multiplicand
with the digits of the multiplier one at a time (starting from rightmost towards the left) and write the results
obtained at every intermediate phases (shifting/aligning it to one position left of the previous line). Finally, she
add all these intermediate stage results and produce the final answer. The two examples she gave in class are
shown below.

234 <== Multiplicand ==> 9876

x 56 <== Multiplier ==> x 543

-------- ----------

1404 29628

+ 1170 39504

-------- + 49380

13104 ----------

5362668

Your task is to implement/automate this technique in terms of a C-program so that Alice need not have to do
it by-hand everytime while showing it in her class. The program takes as input two non-negative integers (each
of which is < 109) as the multiplicand and the multiplier. It outputs all the intermediate stages of results (as
shown in the above examples) padding the extreme right fields with ‘0’s (instead of blanks) and then provide
the final answer by adding all these intermediate step-results.

Example Inputs/Outputs:

Sample-1:

Enter Multiplicand: 99999

Enter Multiplier: 888

++ School-book Multiplication Procedure ++

99999

888

799992

7999920

79999200

88799112

Sample-2:

Enter Multiplicand: 1111

Enter Multiplier: 203

++ School-book Multiplication Procedure ++

1111

203

3333

0

222200

225533

Submit a single C source file. Do not use global/static variables.

3

CS19001: Programming and Data Structures Laboratory
Assignment No. 3C (Iterations and Looping)

Date: 23-August-2019

Problem Statement:

Madam Lorina from Wonderland School wants to show in her drawing class how a square block can be designed
by drawing boundaries of the block with only numbers. The pattern she uses is to gradually decrement the
number from outer boundary to the inner region boundary by one, and gradually reach the center point with
number 1 in this process. For a given input N , the square block design is of (2N − 1) length. The outermost
perimeter consists of only the number N , the immediate inner layer boundary consists of only the number
(N − 1), the next inner layer boundary with (N − 2), ... so on, until the center is 1. The example she gave in
class (for input 6) is shown below.

6 6 6 6 6 6 6 6 6 6 6

6 5 5 5 5 5 5 5 5 5 6

6 5 4 4 4 4 4 4 4 5 6

6 5 4 3 3 3 3 3 4 5 6

6 5 4 3 2 2 2 3 4 5 6

6 5 4 3 2 1 2 3 4 5 6

6 5 4 3 2 2 2 3 4 5 6

6 5 4 3 3 3 3 3 4 5 6

6 5 4 4 4 4 4 4 4 5 6

6 5 5 5 5 5 5 5 5 5 6

6 6 6 6 6 6 6 6 6 6 6

Your task is to implement/automate this technique in terms of a C-program so that Lorina need not have to do
it by-hand everytime while showing it in her class. The program takes as input a positive integer (within range
[1− 99]) denoting the number to start marking outer boundary. The output will be the design as shown above.

Example Inputs/Outputs:

Sample-1:

Enter Positive Number for Outermost Boundary [1-99]: 5

The Drawing:

5 5 5 5 5 5 5 5 5

5 4 4 4 4 4 4 4 5

5 4 3 3 3 3 3 4 5

5 4 3 2 2 2 3 4 5

5 4 3 2 1 2 3 4 5

5 4 3 2 2 2 3 4 5

5 4 3 3 3 3 3 4 5

5 4 4 4 4 4 4 4 5

5 5 5 5 5 5 5 5 5

Sample-2:

Enter Positive Number for Outermost Boundary [1-99]: 1

The Drawing:

1

Sample-3:

Enter Positive Number for Outermost Boundary [1-99]: 2

The Drawing:

2 2 2

2 1 2

2 2 2

Submit a single C source file. Do not use global/static variables.

4

