CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.html

08-Oct-2018

CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings

Table of Contents

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

CS19001:

Programming and Data Structures Laboratory

Tutorial: Characters

Characters
Tutorial: Strings

2 Tutorial: Strings

rutoriai. Strings

3 Assignments

Tutorial:

Characters

Declaration and Initialization

```
char ch = 'a'; OR char ch; ch = 'a';
```

ASCII Values of Characters

Every character has an integer ASCII value and you can get that by printing it in integer format.

```
char ch = 'a';
printf(''%d'',ch);
    // prints ASCII value (97) of 'a'
```

Let us not memorize the ASCII values (of a-z, A-Z and 0-9). It can easily be assigned to any integer and can be found/operated. Moreover, integers and characters are inter-operable.

```
int x = 'A';
printf(''%c'',x+3);
    // prints the character 'D'
```

CS19001: Programming and Data Structures Laboratory

> Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings

Character manipulations

Example: Simple text encryption

Caesar cipher is a simple technique of encryption of plain text byreplacing every character in the plain text by a character fixed number of positions down the list of the alphabet. The last characters are folded back to the beginning. The numerical digits and all other characters will remain unchanged.

Shift: 5		Shift: 2	
Original	Encrypted	Original	Encrypted
'A'	'F'	ʻa'	'c'
'B'	'G'	ʻb'	'd'
•	:	•	
'Y'	,D,	'y'	'a'
'Z'	'E'	'z'	'b'

Let us program to read a text stream and will encrypt the English alphabets, [A - Z] and [a - z], using Caesar cipher. The value of shift should be within 1 - 10 and will be decided by the rand() function.

CS19001: Programming and Data Structures Laboratory

> Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings

C-Program: Simple text encryption

```
#include <stdio.h>
#include <stdlib.h> // for rand()
#include <ctype.h> // for isalpha()
int main()
  char c, shift;
  // generating random shift
  shift = (char)(rand()\%10 + 1):
  while((c = getchar()) != EOF) {
    if(isalpha(c)) { // checking for alphabets
      if(isupper(c)) // upper-case alphabet
        putchar((c-'A'+shift)%26+'A');
      else // lower-case alphabet
        putchar((c-'a'+shift)%26+'a');
    }
    else putchar(c); // other characters unchanged
 putchar('\n');
  return 0;
```

CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings
Assignments

Table of Contents

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

CS19001:

Programming and Data Structures

Tutorial: Characters

Characters

Tutorial:

2 Tutorial: Strings

Tutorial: Strings

3 Assignment

the string.

```
int main ()
{
   char greet[3]={'H','i','\0'};
   printf("Greeting message: %s\n",greet);
   return 0;
}
```

Variation in initialization

```
char c[]="abcd";
char c[5]="abcd";
char c[]={'a','b','c','d','\0'};
char c[5]={'a','b','c','d','\0'};
```

CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings

Reading string from terminal

```
#include <stdio.h>
int main(){
    char name[20];
    printf("Enter name: ");
    scanf("%s",name);
    printf("Your name is %s.",name);
    return 0;
}
```

Enter name: Dennis Ritchie Your name is Dennis.

 scanf() function takes only string before the white space. CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings

Reading a line of text

```
int main(){
    char name[30],ch;
    int i=0;
    printf("Enter name: ");
    while (ch!='\n')
    {// terminates if user hit enter
        ch=getchar();
        name[i]=ch:
        i++:
    }// inserting null character at end
    name[i]='\0';
    printf("Name: %s",name);
    return 0;
```

CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings

Better method

```
int main(){
    char name[30]:
    printf("Enter name: ");
    gets(name);
    //Function to read string from user.
    printf("Name: ");
    puts(name);
    //Function to display string.
    return 0;
Enter name. Dennis Ritchie
Name: Dennis Ritchie
```

CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings

Passing Strings to Functions

```
void Display(char ch[]);
int main(){
    char c[50];
    printf("Enter string: ");
    gets(c);
    Display(c);
    // Passing string c to function.
    return 0;
}
void Display(char ch[]){
    printf("String Output: ");
    puts(ch);
```

CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings
Assignments

Library functions

```
#include <stdio.h>
#include <string.h>
int main ()
   char str1[12] = "Hello";
   char str2[12] = "World";
   char str3[12];
   int len ;
   strcpy(str3, str1);
   printf("strcpy(str3,str1): %s\n",str3);
   strcat( str1, str2);
   printf("strcat(str1,str2): %s\n",str1);
   len = strlen(str1):
   printf("strlen(str1) : %d\n", len );
   return 0:
```

CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings

Result

strcpy(str3, str1) : Hello strcat(str1, str2): HelloWorld strlen(str1) : 10

do not forget to include string.h

CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Characters

Tutorial:

Tutorial: Strings

A bit more about string manipulation

- int strcmp (char s[], char t[]):
 Returns 0 if the two strings are identical, a negative value if s is lexicographically smaller than t (i.e., if s comes before t in the standard dictionary order), and a positive value if s is lexicographically larger than t.
 Comparison is done with respect to ASCII values (A 65, a 95)
- int strlen (char s[]):
 Returns the length (the number of characters before the first null character) of the string s.

CS19001: Programming and Data Structures Laboratory

> Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings
Assignments

Tutorial: Characters

Tutorial: Strings

Assignments

Tutorial: Characters

2 Tutorial: Strings

Programming Assignments Complete and submit during lab

CS19001: Programming and Data Structures Laboratory

> Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings

Assignment 1 [Text-Stats]

Write a C-program to perform the following:

- Ask the user to input some text/string (may contain anything that can be entered via keyboard including spaces, tabs, new-lines etc.). The end of entry will be determined by pressing $\langle Ctrl + D \rangle$ keys (together).
- Computes and Displays the following statistics:
 - 1 the number of lines present in the text;
 - 2 the number of words presnt in the text;
 - the number of total characters present in the text;
 - the number of lower-case alphabets, upper-case alphabets and numeric digits present in the text (report these three statistics additionally);
 - 6 the number of spaces entered in the text; and
 - 1 the number of tabs entered in the text.

CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings

Assignment 2 [Code-Word]

Assuming that the fixed codes for the alphabets [a - z] are given as, 'a'=1, 'b'=2, ..., 'y'=25 and 'z'=26, write a recursive function to generate all possible alphabatic words from a given code string.

Example:

Let the given code string be, ''1123''.

Then, all the possible alphabetic words are:

```
aabc // a = 1, a = 1, b = 2, c = 3
aaw // a = 1, a = 1, w = 23
alc // a = 1, l = 12, c = 3
kbc // k = 11, b = 2, c = 3
kw // k = 11, w = 23
```

Write a (C-program) main function that takes a code string from the user and displays all the possible alphabetic words.

CS19001: Programming and Data Structures Laboratory

> Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Characters
Tutorial: Strings

Tutorial:

Assignment 3 [Rotation-Equivalence]

Definitions

k-rotation: For any string str of length n, the k-rotation of str from index i (0 < $i + k \le n$) creates a new string, where only the k-character substring of str (from index i), i.e. str[i..(i+k-1)], is reversed/rotated and all other characters remain intact.

k-rotation equivalence: A string str1 is said to be k-rotation equivalent with another string str2, if the k-rotation from any index i ($0 < i + k \le n$) of str1 can produce identical str2 (both str1 and str2 are of equal length n).

Example

```
Let, str1 = \text{``abacus''}, str2 = \text{``abucas''} and str3 = \text{``baacsu''}. Suppose, k = 3.
```

Then, str1 is 3-rotation equivalent with str2, because str1 can be 3-rotated from index 2 to get str2.

However, *str*1 is NOT 3-rotation equivalent with *str*3.

CS19001: Programming and Data Structures Laboratory

> Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings

Assignment 3 [Rotation-Equivalence]

Recursive *k*-rotation function: rotateStr(char str[], int idx, int k);

Write a **recursive** function rotateStr which produces rotations in the k-length substring of str starting from index, idx.

Write a C-Program (main) that,

- prompts the user to enter two strings, String1 and String2^a;
- asks the user to enter a rotation length^b, say k;
- uses the rotateStr function and finds out whether String2 is a k-rotation equivalent of String1,
- if yes, reports the index of String1 from which k-rotation creates String2. Otherwise, reports the non-equivalence as a result.

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Tutorial: Characters

Tutorial: Strings

CS19001: Programming and Data Structures Laboratory

^aRemember, the first criteria of equivalence between any two strings is that they must be of equal size – so make appropriate checks for that!

^bIf the rotation length is more than the string length, automatically *it will be* set to string length, which is the maximum applicable part!

Thank You

CS19001: Programming and Data Structures Laboratory

> Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Characters

Tutorial:

Tutorial: Strings