
CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
KharagpurCS19001: Programming and Data

Structures Laboratory

Soumyajit Dey, Aritra Hazra;
CSE, IIT Kharagpur

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.html

29-Sep-2018

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.html

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Sorting

Suppose you have an array A[] of n elements (say,
integers). They are stored in the array locations,

A[0],A[1], . . . ,A[i], . . . ,A[n − 1]

We want to rearrange these integers in such a way that
after the rearrangement, we have either of the following:

A[0] ≤ A[1] ≤ · · · ≤ A[i] ≤ · · · ≤ A[n − 1]

A[0] ≥ A[1] ≥ · · · ≥ A[i] ≥ · · · ≥ A[n − 1]

Then, the resultant array is called sorted in either
ascending or descending order, respectively.

There are many such sorting methods. Bubble-sort and
Selection-sort are two among them.

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Bubble-sort (in ascending order)

Code

for (i=n-2; i>=0; --i)

{

for (j=0; j<=i; ++j)

{

if (A[j] > A[j+1])

{

t = A[j];

A[j] = A[j+1];

A[j+1] = t;

}

}

}

Working Principle

A[4] = {4,3,2,1}
i,j: A → A′

bubble till position
i=4-2=2.
2,0: 4,3,2,1 → 3,4,2,1
2,1: 3,4,2,1 → 3,2,4,1
2,2: 3,2,4,1 → 3,2,1,4
bubble till position i=1
1,0: 3,2,1,4 → 2,3,1,4
1,1: 2,3,1,4 → 2,1,3,4
bubble till position i=0
0,0: 2,1,3,4 → 1,2,3,4

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Selection-sort (in ascending order)

Code

for (i=n-1; i>0; --i)

{

m = i;

for (j=0; j<i; ++j)

{

if (A[j] > A[m])

m = j;

}

t = A[i];

A[i] = A[m];

A[m] = t;

} // Why swap if i=m?

Working Principle

A[4] = {4,3,2,1}
i = 3 → m = 3

j = 0: m = 0
j = 1: m = 0
j = 2: m = 0

A[4] = {1,3,2,4}
i = 2 → m = 2

j = 0: m = 2
j = 1: m = 1

A[4] = {1,2,3,4}
i = 1 → m = 1

j = 0: m = 1
A[4] = {1,2,3,4}

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Searching

Suppose you have an array A[] of n elements (say,
integers). They are stored in the array locations,

A[0],A[1], . . . ,A[i], . . . ,A[n − 1]

We want to search/report the location/index of a
particular value, say v , from this array of integers.

We report the index ‘k ’ (0 ≤ k < n), if A[k] = v .
Otherwise, we may report ‘−1’ to denote that the
searched element, v , is not found.

Given an unordered array, you have to compare each
element of the array sequentially to find the index,

For all i (0 ≤ i < n), whether A[i] = v?

However, for ordered (ascending / descending) arrays,
things are more exciting! We shall study these variants.

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Searching in an Unordered Array

Forward-Iteration

for (i=0; i<n; ++i)

if(A[i] == v)

break ;

// Answer : found at i

if(i == n) i = -1;

// Answer : not found

Backward-Iteration

for (i=n -1; i >=0; --i)

if(A[i] == v)

break ;

// Answer : found at i

Recursive-Code

int seqSr (int A[], int n,

int v)

{

if (n > 0)

{

if(A[n-1] == v)

return n-1;

else

return (seqSr(A,n-1,v));

}

else

{

return -1;

}

}

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Searching in an Ordered Array

Idea of Binary Search:
Consider a sorted array A and an element (say v) as input.
The goal is to report whether the element is present in the
array and in that case what is the corresponding array index.

Choose the middle element A[n/2]

If v == A[n/2], we are done

If v < A[n/2], search for v between A[0] and A[n/2− 1]

If v > A[n/2], search for v between A[n/2 + 1] and
A[n − 1]

Repeat until v is found or no more elements remain to
be searched.

We consider three variables first, last and mid pointing to
array beginning, end and middle respectively. We keep on
updating these three elements in each iteration recursively.

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Searching in an Ordered Array

Binary Search

int binSr (int A[], int v,

int si, int ei)

{

int mi;

if (si <= ei)

{

mi = (si+ei)/2;

if(A[mi] > v)

return binSr(A,v,si ,mi -1);

else if (A[mi] < v)

return binSr(A,v,mi+1, ei);

else

return mi;

}

else

return -1;

}

Working Principle
Ex-1: A[5] = {1, 2, 3, 4, 5}; v = 2

si=0, ei=4; mi=(0+4)/2=2
A[] = {1, 2, 3, 4, 5}; A[2]=3(>2)
si=0, ei=mi-1=1; mi=0
A[] = {1, 2}, 3, 4, 5}; A[0]=1(<2)
si=mi+1=1, ei=1; mi=1
A[] = {1, {2}, 3, 4, 5}; A[1]=2

Ex-2: A[5] = {1, 2, 3, 4, 5}; v = 0

si=0, ei=4; mi=(0+4)/2=2
A[] = {1, 2, 3, 4, 5}; A[2]=3(>0)
si=0, ei=mi-1=1; mi=0
A[] = {1, 2}, 3, 4, 5}; A[0]=1(>0)
si=0, ei=mi-1=-1
A[] = {1, 2, 3, 4, 5}; not-found(-1)

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Programming Assignments
Complete and submit during lab

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Assignment 1 [MinMax-Sort]
Write a C-program to perform MinMax-sort over an unordered
n-element integer array to make the elements ascending-ordered.

Procedure
The working of the MinMax-sort is somewhat similar to that of
selection sort. Here, the outer loop runs over (i , j) together, where i

ranges from 0 up to (⌊ n

2
⌋ − 1) and j ranges from (n − 1) down to ⌈ n

2
⌉.

For given i , j , largest and smallest elements in the sub-array
A[i],A[i + 1], . . . ,A[j − 1],A[j] are found out (both together) and are
swapped with the elements A[j] and A[i], respectively. Thus, during the
first iteration of the outer loop A[n − 1] and A[0] receives the largest
and smallest element in the array, respectively; in the second iteration
A[n − 2] and A[1] receives the second-largest and second-smallest
element, respectively and so on.

Example

{4,5,6,3,1,2} 7−→ after iteration 1 of outer loop 7−→ {1,5,2,3,4,6}
{1,5,2,3,4,6} 7−→ after iteration 2 of outer loop 7−→ {1,2,4,3,5,6}
{1,2,4,3,5,6} 7−→ after iteration 3 of outer loop 7−→ {1,2,3,4,5,6}

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Assignment 2 [Biparted-Ternary-Search]

Procedure
Consider a variation of binary search where the sorted array of size n is
divided into two parts, but everytime by choosing the n/3-th element
instead of the middle elements. The algorithm is as follows:

Compare v (the searched element) with the n/3-th element

If equal, v found – return

If v is smaller, search first sub-array (0 to n/3− 1)

If v is greater, search middle sub-array (n/3 + 1 to n − 1)

Recursive-Function
Write a recursive C-function
int BiTernarySearch (int A[], int v, int low, int high)
which takes as parameters a sorted array A of integers, two indices low
and high (low ≤ high) in A and the element to be searched for v . The
function returns the index, k (low ≤ k ≤ high), of A if v is found within
the indices low and high (both included) of A, otherwise it returns −1.

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Assignment 2 [Biparted-Ternary-Search]

Main-Program

Write a main C-function that

1 reads from user an integer n (n ≤ 100000) and then takes
from user n integers in an array (may be unordered);

2 reads another integer x , which is the element being searched;

3 sort the array elements in ascending order using previous
MinMax-Sort program (Refer to Assignment-1);

4 checks whether x resides in the array or not, by using
BiTernarySearch function;

5 prints the location/index where the element x resides in the
array, otherwise print −1 in case it is not found.

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Assignment 3 [Triparted-Ternary-Search]

Consider a variation of binary search where the sorted array
of size n is divided into three parts instead of two parts by
choosing the n/3-th and 2n/3-th elements instead of only
the middle elements. The algorithm is as follows:

Compare v (the element being searched for) with the
n/3-th element

If equal, v found – return

If v is smaller, search first sub-array (0 to n/3− 1)

If v is greater, compare with 2/3-th element

If equal, v found – return

If v is smaller, search middle sub-array (n/3 + 1 to
2n/3− 1)

If v is greater, search third sub-array (2n/3+1 to n− 1)

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Assignment 3 [Triparted-Ternary-Search]

Recursive-Function
Write a recursive C-function
int TriTernarySearch (int A[], int v, int low, int high)
which takes as parameters a sorted array A of integers, two indices low and
high (low ≤ high) in A and the element to be searched for v . The function
returns the index, k (low ≤ k ≤ high), of A if v is found within the indices
low and high (both included) of A, otherwise it returns −1.

Main-Program
Write a main C-function that

1 reads from user an integer n (n ≤ 100000) and then takes from user n
integers in an array (must be in ascending order);

2 reads another integer x , which is the element being searched;

3 checks whether x resides in the array or not, by using TriTernarySearch
function;

4 prints the location/index where the element x resides in the array,
otherwise print −1 in case it is not found.

You do not have to sort the array. Just enter the numbers in sorted order
directly from the keyboard.

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Thank You

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

