CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.htm1 20-Aug-2018

Iterative execution (Loops)

The while loop
while (condition)
$\{$
execute loop body; $\}$

GCD by repeated division

$$
\begin{aligned}
& \text { while }(b>0) \\
& \left\{\begin{aligned}
\{ & =a \% b ; \\
a & =b ; \\
b & =r ;
\end{aligned}\right. \\
& \} \\
& \text { printf }\left(" g c d=\% d \backslash n^{\prime \prime}, a\right) ;
\end{aligned}
$$

Iterative execution (Loops)

The for loop

for (initialize; condition; increment)
\{
execute loop body;
\}
$N^{\text {th }}$ harmonic number $H(n)=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}$

$$
\begin{aligned}
& H=0 ; \\
& \text { for }(i=1 ; i<=n ;++i) H+=1.0 / i ; \\
& \quad \text { printf }(" H(\% d)=\% f \backslash n ", n, H) ;
\end{aligned}
$$

Iterative execution (Loops)

The Fibonacci numbers

$$
F_{n}=F_{n-1}+F_{n-2} \text { for } n \geq 2, F_{1}=1, F_{0}=0
$$

While
For
$\mathrm{i}=1, \mathrm{~F}=1 ; \mathrm{p} 1=0 ; \mathrm{p} 1=0, \mathrm{~F}=1$;
while (i < n) for (i = 2;i <= n;++i)
$\{$
$\{$

$$
\begin{aligned}
& \mathrm{p} 2=\mathrm{p} 1 ; \\
& \mathrm{p} 1=\mathrm{F} ; \\
& \mathrm{F}=\mathrm{p} 1+\mathrm{p} 2 ;
\end{aligned}
$$

$$
\}
$$

\}
printf("F (\%d)=\%d", n, F); //for both programs

Loop flow control

- A loop may be conditionally broken from inside

```
while (1)
{
    if (b == 0) break;
    r = a % b;
    a = b;
    b = r;
}
printf("gcd = %d\n", a);
```


Loop flow control

- A loop iteration may be conditionally skipped
- Ex: Printing $1,2, \ldots, 100$ neatly with 10 integers per line

```
for (i=1; i<=100; ++i) {
printf("%4d",i);
if (i%10 != 0) continue;
printf("\n");
}
```


Debugging you program: removing logical errors

- First look at your program and see if you can find some obvious logical errors. If found, correct and retry
- If it is not immediately evident, take some (small) input, work out by hand what the values of your variables should be after each step logically
- Put printf statements at those steps and find the first step the program prints a wrong value. Keep repeating until all mistakes are corrected

Bug Localization

- Program hangs, second loop does not terminate

Aritra Hazra;
CSE, IIT
Kharagpur
void main()
\{

$$
\begin{aligned}
& \text { int } \mathrm{k}=2, \mathrm{n}=1 \text {; } \\
& \text { while }(\mathrm{k}<7)\{ \\
& \mathrm{n}=\mathrm{n} * \mathrm{k} ; \\
& \mathrm{k}++
\end{aligned}
$$

$$
\}
$$ while (k ! = 21) \{

$\mathrm{n}=\mathrm{n}+\mathrm{k}$; $\mathrm{k}=\mathrm{k}+2$;
\}/* do not miss $\backslash \mathrm{n}$ in debug printf */ printf("After loop $2 \backslash n ")$; /*printf for debugging*/ printf("n is \%d\n", n);

GCD: erroneous implementations

Correct

$$
\text { always } \mathrm{o} / \mathrm{p}=0
$$

$$
\begin{aligned}
& \text { while (1) } \\
& \begin{array}{l}
\text { if (b = }=0 \text {) break ; } \\
r=a \% \text { b; } \\
b=r ; \\
a=b ;
\end{array}
\end{aligned}
$$

/*last 2 statements exchanged*/
o / p is in ' a '. In R.H.S program, $a=0$ due to the chaining effect when ' r ' is 0

Debugging a single block

Executing the correct program with $a=45, b=12$
while (1)
if ($b==0$) break ;
r = a \% b; /* iter 1 values*/
printf("a=\%d,b=\%d,r=\%d\n"); /* 45,12,9*/
$\mathrm{a}=\mathrm{b}$;
printf("a=\%d,b=\%d,r=\%d\n"); /* 12,12,9*/
$\mathrm{b}=\mathrm{r}$;
printf("a=\%d,b=\%d,r=\%d\n"); /* 12, 9,9*/
\}
printf ("gcd = \%d\n", a) ;
We expect $a=$ old value of $b=12, b=r=a \% b=9$
so, this is fine

Debugging a single block

Executing the incorrect program with $a=45, b=12$
while (1)
if ($b==0$) break ;
r = a \% b; /* iter 1 values*/
printf("a=\%d,b=\%d,r=\%d\n"); /* 45,12,9*/
$\mathrm{b}=\mathrm{r}$;
printf("a=\%d,b=\%d,r=\%d\n"); /* 45, 9,9*/
$\mathrm{a}=\mathrm{b}$;
printf("a=\%d,b=\%d,r=\%d\n"); /* 9, 9,9*/
\}
printf ("gcd = \%d\n", a) ;
We expect $a=$ old value of $b=12, b=r=a \% b=9$
Only r is assigned correctly, problem with code after $r=a \% b$

GCD: some more erroneous implementations :)

Infinite loop

while (1)
\{
if (b = $=0$) break ;
$r=a \% b ;$
$\mathrm{a}=\mathrm{b}$;
$b=a ;$
\}
$/ * b=a$ by mistake*/

Divide by zero

```
while (1)
{
    if (a == 0) break ;
    r = a % b;
    a = b;
    b = r;
}
/*a==0 by mistake*/
```


Nested loop:

int i, j;
/* print header line: */
Soumyajit Dey,
printf (" ");
$\operatorname{for}(j=1 ; j<=10 ; j=j+1)$ printf (" \%3d", j);
printf (" ${ }^{\prime \prime}$ ") ;
/* print table: */
for $(i=1 ; i<=10 ; i=i+1)$
\{

$$
\begin{aligned}
& \operatorname{printf}(" \% 2 d ", i) ; \\
& \text { for }(j=1 ; j<=10 ; j=j+1)
\end{aligned}
$$

$$
\text { printf (" \%3d", i }+j) \text {; }
$$

printf("\n");
\}
return 0;

Output table

	1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10	11
2	3	4	5	6	7	8	9	10	11	12
3	4	5	6	7	8	9	10	11	12	13
4	5	6	7	8	9	10	11	12	13	14
5	6	7	8	9	10	11	12	13	14	15
6	7	8	9	10	11	12	13	14	15	16
7	8	9	10	11	12	13	14	15	16	17
8	9	10	11	12	13	14	15	16	17	18
9	10	11	12	13	14	15	16	17	18	19
10	11	12	13	14	15	16	17	18	19	20

Make a simple modification to the program to print a multiplication table, or a subtraction table

break statement in loop nest

```
void main()
{
    int low, high, desired, i, flag = 0;
    scanf("%d %d %d", &low, &high,&desired);
    i = low;
    while (i < high) {
        for (j = i+1; j <= high; ++j) {
        if (j % i == desired) {
                        flag = 1;
                        break; //breaks from for loop
        }
        }
        if (flag == 1) break;
        i = i + 1; //breaks from while loop
    }
}
```


Programming Assignments Complete and submit during lab

Assignment 1

Write a program which will take as input an integer x and print out the value of x !, factorial of x. We will like to compute factorial of reasonably large integers, say 10, 11, etc.
However, say 15! cannot be stored in a 32-bit integer data type, so for computing factorial, use "double" as a data type and avoid errors.

Assignment 2

Write a program which performs the following.

- requests the user for an integer i.
- prints out the value of sin function inside the interval $[0,2 \pi]$ at $i+1$ uniformly placed points.
- use float as a data type for input and double as a data type for output of sin function (math.h).
- Use "M_Pl", a constant defined in math.h as the value of π. You can directly use it in your code as it is already defined in the header file.

Assignment 2: Expected Output

Enter resolution: 6
$\sin (0.00 \mathrm{pi})=0.000000$
$\sin (0.33 \mathrm{pi})=0.866025$
$\sin (0.67 \mathrm{pi})=0.866025$
$\sin (1.00 \mathrm{pi})=-0.000000$
$\sin (1.33 \mathrm{pi})=-0.866025$
$\sin (1.67 \mathrm{pi})=-0.866025$
$\sin (2.00 \mathrm{pi})=0.000000$

Assignment 3

Ask the user to provide a resolution r which is any float value (preferably smaller than 0.0004). Modify the previous program as follows.

- Stop using the math.h sin function. Note that $\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots$
- Implement a loop for computing the above series where in each iteration one term is +/-
- Break out of loop when the difference between the partial sums computed in the last two iterations is $<r$.
- suppose, $a=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}, b=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}$ and $|a-b| \leq r$, then break from loop and report $[a, b]$ as approximate value of $\sin (x)$ if $a \leq b$ or $[b, a]$ if $b<a$.

Assignment 3: Useful Hints

- For safe handling of precision, use "double" as data type.
- Use fabs() function from math.h for computing modulus.

Assignment 3: Expected Output

Enter resolution: 6
Enter Interval size: 0.0004
Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur
my $\sin (0.00 \mathrm{pi})=[0.000000,0.000000]$
$\sin (0.33 \mathrm{pi})=0.866025$
my $\sin (0.33 \mathrm{pi})=[0.866021,0.866295]$
$\sin (0.67 \mathrm{pi})=0.866025$
$\mathrm{my} \sin (0.67 \mathrm{pi})=[0.866023,0.866108]$
$\sin (1.00 \mathrm{pi})=-0.000000$
my $\sin (1.00 \mathrm{pi})=[-0.000001,0.000021]$
$\sin (1.33 \mathrm{pi})=-0.866025$
my $\sin (1.33 \mathrm{pi})=[-0.866126,-0.866020]$
$\sin (1.67 \mathrm{pi})=-0.866025$
$\mathrm{my} \sin (1.67 \mathrm{pi})=[-0.866049,-0.865672]$
$\sin (2.00 \mathrm{pi})=0.000000$
my $\sin (2.00 \mathrm{pi})=[-0.000005,0.000083]$

Thank You

