CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.htm1 13-Aug-2018

The If-else syntax

if (boolean combination of relational expressions)
$\{\longleftarrow$ scope of if program statement(s)
\}
else
$\{\longleftarrow$ scope of else program statement(s)
\}

Nested If-else

```
if(condition1)
{
    if(condition2)
        {
            statement(s);
        }
    else
        { /* execute when
        (condition1 && !condition2)==TRUE */
        statement(s);
        }
}
else
{
    statement(s);
}
```


Compute |xy|

if $(((x>=0) \& \&(y>=0))|\mid((x<0) \& \&(y<0)))$

$$
z=x * y ;
$$

else

$$
\mathrm{z}=-\mathrm{x} * \mathrm{y} ;
$$

- Complex conditions (error pron and non-intuitive in some cases)

Compute $|x y|$

$$
\begin{aligned}
& \text { if }(x>=0) \\
& \{\quad \text { if }(y>=0) \quad z=x * y ; \text { else } z=-(x * y) ; \\
& \} \\
& \text { else } \\
& \{\quad \text { if }(y>=0) \quad z=-(x * y) ; \text { else } z=x * y ;
\end{aligned}
$$

- This is how we think, create sub cases based on simple conditions

Repeated If-else

```
if(condition1){
    statement(s); /* go to college */
}
else{
    if(condition2){
        statement(s); /* otherwise watch movie*/
    }
    else{
        if(condition3){
            statement(s); /* otherwise, sleep*/
        }
        else{
            ------/*thinking with elimination*/
        }
    }
} /*nesting of conditions is only in else*/
```


Repeated If-else has a simpler syntax

```
if(Condition 1)\{
    Block 1
\}
else if(Condition 2)\{
    /*else if \(=\) same as saying otherwise */
        Block 2
\} -------------
else if(Condition \(n\) ) \{
        Block \(n\)
\}
else\{
        Block n+1
\}
/*need not manage complex hierarchy of braces*
```

Implementation of the assignment $y=|x|$

```
scanf("%d",&x);
if (x == 0)
    y = 0;
else if (x > 0)
    y = x;
else y = -x;
```


Multiway (>2) Program flow

- Still now, a program had atmost two possible execution paths at any point of time
- We simply tested boolean conditions
- Similarly, we can try matching an expression with possible set of values it may assume
- The set of possible values have to be known while writing the program

The switch statement

```
switch (E) {
    case val1 :
        Block 1 /*Execute if E = val1*/
        break;
    case val2 :
        Block 2
        break;
    case valn :
        Block n
        break;
    default :
    /* Execute if E is equal to none */
        Block n+1
}
```


The break in switch

- In a switch case, once a match is found, further comparisons are disabled.
- But all following statements before the closing brace are executed one by one.
- The break in switch forces exit from switch

Programming Assignments Complete and submit during lab

Assignment 1

Read from user input the real coefficients a, b, c for the quadratic equation $a x^{2}+b x+c=0$. Print out the roots of the equation in all three possible cases (real, imaginary and complex).

Assignment 2

The distance between two integers can be calculated by subtracting the smaller number from the bigger number. Ex: Let two numbers be -27 and 16 . Then, distance $=16-(-27)=43$, since $16>-27$.

Write a C program to perform the following actions:

- Read from user input two integers within -50 to 50 .
- If the input numbers are not within the mentioned range [$-50,50$], print a message: Error: Out-of-Range!
- Calculate the distance.
- Print the result both in Numbers and English Words. Output: 〈43, Forty Three〉

Assignment 3

Write a C-program to perform the following:

- Read from user input four integers m, n, o, p.
- If m is not smaller than n and o is not smaller than p, output the message "Inputs are not $\mathrm{Ok}^{\prime \prime}$
- Otherwise, consider the following arithmetic

$$
\begin{aligned}
& {[m, n]+[o, p]=[m+o, n+p]} \\
& {[m, n]-[o, p]=[m-p, n-o]}
\end{aligned}
$$

- Compute and output the above two quantities.

Think (the logic!): What is $[m, n] *[o, p]$ and $[m, n] /[o, p]$? Reference: https://en.wikipedia.org/wiki/Interval_arithmetic

Thank You

