
Linked Lists and ADT

Soumyajit Dey and Aritra Hazra

Department of Computer Science & Engineering,
Indian Institute of Technology Kharagpur,
Paschim Medinipur, West Bengal, India – 721302.

CS19001: Programming and Data Structures Laboratory
05-Nov-2018

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.html

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.html
http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.html
http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.html

Tutorial: Linked Lists

2

© Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

❑ A list refers to a sequence of data items
■ Example: An array

● Array index is used for accessing and manipulating array elements
■ Problems with arrays

● Array size specified at the beginning (at least during dynamic allocation)
▪ realloc can be used to readjust size in middle, but contiguous

chunk of memory may not be available
● Deleting / Inserting an element may require shifting of elements
● Wasteful of space

❑ A completely different way to represent a list (Linked List)
■ Make each data in the list part of a self-referential structure
■ The structure also contains a pointer or link to the structure (of the same

type) containing the next data

Lists

Structure 1 Structure 2 Structure 3

data data data

3

© Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

❑ Let each structure of the list (lets call it node) have two fields:
■ One containing the data
■ Other containing address of the structure holding next data in the list

❑ The structures in the linked list need not be contiguous in memory
■ Ordered by logical links stored as part of data in the structure itself
■ The link is a pointer to another structure of the same type

❑ The pointer variable next contains either the address of the location in memory
of the successor list element or the special value NULL
■ NULL is used to denote the end of the list (no successor element)

Single Linked Lists

Definition of a Node:
typedef struct node {
 int data;
 struct node *next;
} llNode;
llNode *head, *prev, *cur;

Creation of a Node:
llNode *createNode(int item)
{
 llNode *new = (llNode *)malloc(sizeof(llNode));
 if(new ==NULL) printf(“Malloc Error!”);
 else {
 new->data = item; new->next = NULL;
 }
 return (new);
} NULL

4

data

node

next

© Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Traversal of Linked Lists

5

15 NULL 18 12 15

Finding an Element in Single Linked List:
llNode *searchLL
 (llNode *head, int elm)
{
 llNode *cur = head;
 while(cur != NULL) {
 if(cur->data == elm)
 break;
 cur = cur->next;
 }
 return (cur);
}

head

Pointing Last Node in Single Linked List:
llNode *lastNodeLL(llNode *head)
{
 llNode *cur = head;
 if(cur != NULL) // no node
 while(cur->next != NULL)
 cur = cur->next;
 return (cur);
}

Last Node Recursive Printing of Elements:
void recPrintLL(llNode *head) {
 if(head != NULL){
 printf(“%d, ”, head->data);
 recPrintLL(head->next);
 printf(“%d, ”, head->data);
 }
}

Need to Traverse all
N elements in list

Forward Printing

Backward Printing
15, 18, 12, 15, 15, 12, 18, 15,

© Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Insertion into Linked Lists

6

3 NULL 5 9 11 head

7

prev

new

Insert a new Node after prev Node:
void insertAfterLL
 (llNode *prev, llNode *new)
{
 new->next = prev->next;
 prev->next = new;
}

Insert a new Node in Front:
void *insertFrontLL
 (llNode **phead, llNode *new)
{
 new->next = (*phead);
 (*phead) = new;
}

3 NULL 5 7 9
head &head

1 new

Insert After a Given Node

Insert as a Front Node

© Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Deletion from Linked Lists

7

2 NULL 4 6 8 head

prev

Delete a Node after prev Node:
void deleteAfterLL(llNode *prev)
{
 if(prev->next != NULL)
 prev->next =
 (prev->next)->next;
}

Delete the Front Node:
void *deleteFrontLL(llNode **phead)
{
 if((*phead) != NULL)
 (*phead) = (*phead)->next;
}

2 NULL 4 6 8
head &head

Delete After a Given Node

Delete the Front Node

2
head cur

4 8 X

llNode *deleteCurLL(llNode **phead)
{
 cur->data = (cur->next)->data;
 deleteAfterLL(cur);
}

No need to traverse entire list
(except cur being Last Node!)

Delete Random (Current) Node

© Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Variations of Linked Lists

❑ Single Linked List with Head and Tail Pointers

❑ Circular Linked List

❑ Double Linked List

❑ Circular Double Linked List

8

10 NULL 20 30 40 head

tail

10 20 30 40 head

10 20 30 40 X X head

data right left

10 20 30 40 head

© Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Programming Assignments
Complete and submit during lab

9

© Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

❑ Suit / Card Nomenclature (Suit = 4 Decks of 13 Cards Each)
■ Card Numbers (Ascending Order of Value): 2–10, J, Q, K, A
 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < J (Jack) < Q (Queen) < K (King) < A (Ace)
■ Deck Types: Spades (♠/S), Hearts (♥/H), Diamonds (♦/D) and Clubs (♣/C)

❑ Write a C-program to simulate the following 2-player game-of-cards:
■ Task-1: Write few basic Linked List functions/code

● Define a node in the list as shown in the right
● Write a function to Create a New Node
● Write a function to Insert a New Node at the End/Tail of the List
● Write a function to Delete the Head/Front Node from the List

■ Task-2: Write a Function to –
● Distribute total 52 cards randomly into two hands of 26 unique cards each
● Keep these cards in two separate linked list structure for both players

Assignment 1 [Card-Matching Game]

10

H 5 D 7 C J S 4 Player-1

D 6 S 7 C 9 H K Player-2

NULL

card
type

card
number next

© Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

■ Task-3: Write C main-function for the game (goes in rounds) as follows:
● Initially, Player-1 will start. From next round, the first turn will be from the player

who wins the last round.
● In each round, both player takes out their first card (following the order of turns)

from the beginning of their respective hands and put this pair one over the other.

● If the numbers printed on the two drawn cards are SAME, the round continues,
and next cards are taken out from both players (turn-wise) … so on …

● A player WINS a round when the number printed on his/her card is MORE than
his/her opponent player in the last pair of cards drawn. In such case, all the
standing cards (of that given round) are acquired by the winning player and (s)he
puts the cards (in same order as drawn) at the end of his/her hand of cards.

● … Similarly, the next round repeats the same play … on and on …

● Finally, if a player can acquire all 52 cards, then (s)he is declared as the
WINNER! If both of the players hand finishes together#, then the match is
declared as TIED!

#It may happen rarely – only when the sequence of cards follow same numbering in both hands

Assignment 1 [Card-Matching Game]

11

Task-3a:
Write a C-
function to
draw (in each
round) two
cards (by
deleting two
players’
head/front
nodes of list).

Task-3b:
Write a C-
function to
match two
drawn cards
(i.e. two
nodes) and
determine the
larger or
equal card
number.

Task-3c: Write a C-function to build a list (in each round) of drawn cards turn-wise and append into
the end of the player list (in order of their play-turns) whoever wins that round.

© Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

❑ Initial Hands:

❑ Play #1 (Turn of Player-1 first): vs Player-2 takes …

❑ New Hands:

❑ Play #2 (Turn of Player-2 first): vs Same! Next Turn …
❑ Play #3 (Turn of Player-2 first): vs Player-1 takes …

❑ New Hands:

Assignment 1 : Simulation for Game-of-Cards

12

H 5 D 7 C J S 4 Player-1

D 6 S 7 C 9 H K Player-2

H 5 D 6

H 5

D 7 C J S 4 Player-1

D 6 S 7 C 9 H K Player-2

D 7 S 7
C J C 9

C 9

H K H 5 D 6 Player-2

C J S 4 S 7 D 7 Player-1

© Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

❑ Random Number Generation
 #include <stdlib.h> // for srand(), rand()

 #include <sys/types.h> // for getpid()

 #include <unistd.h> // for getpid()

 int main()

 {

 // declare srand() in the beginning of main (once)

 srand(getpid());

 // generate any random number [0-9]

 x = rand() % 10;

 return 0;

 }

Assignment 1: Solution Aids

13

© Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

Thank You!

14

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Traversal of Linked Lists
	Insertion into Linked Lists
	Deletion from Linked Lists
	Variations of Linked Lists
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

