
CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
KharagpurCS19001: Programming and Data

Structures Laboratory

Soumyajit Dey, Aritra Hazra;
CSE, IIT Kharagpur

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.html

29-Sep-2018

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.html

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Programming Assignments
Complete and submit during lab

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Assignment 1 [MinMax-Sort]
Write a C-program to perform MinMax-sort over an unordered
n-element integer array to make the elements ascending-ordered.

Procedure
The working of the MinMax-sort is somewhat similar to that of
selection sort. Here, the outer loop runs over (i , j) together, where i

ranges from 0 up to (⌊ n

2
⌋ − 1) and j ranges from (n − 1) down to ⌈ n

2
⌉.

For given i , j , largest and smallest elements in the sub-array
A[i],A[i + 1], . . . ,A[j − 1],A[j] are found out (both together) and are
swapped with the elements A[j] and A[i], respectively. Thus, during the
first iteration of the outer loop A[n − 1] and A[0] receives the largest
and smallest element in the array, respectively; in the second iteration
A[n − 2] and A[1] receives the second-largest and second-smallest
element, respectively and so on.

Example

{4,5,6,3,1,2} 7−→ after iteration 1 of outer loop 7−→ {1,5,2,3,4,6}
{1,5,2,3,4,6} 7−→ after iteration 2 of outer loop 7−→ {1,2,4,3,5,6}
{1,2,4,3,5,6} 7−→ after iteration 3 of outer loop 7−→ {1,2,3,4,5,6}

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Assignment 2 [Biparted-Ternary-Search]

Procedure
Consider a variation of binary search where the sorted array of size n is
divided into two parts, but everytime by choosing the n/3-th element
instead of the middle elements. The algorithm is as follows:

Compare v (the searched element) with the n/3-th element

If equal, v found – return

If v is smaller, search first sub-array (0 to n/3− 1)

If v is greater, search middle sub-array (n/3 + 1 to n − 1)

Recursive-Function
Write a recursive C-function
int BiTernarySearch (int A[], int v, int low, int high)
which takes as parameters a sorted array A of integers, two indices low
and high (low ≤ high) in A and the element to be searched for v . The
function returns the index, k (low ≤ k ≤ high), of A if v is found within
the indices low and high (both included) of A, otherwise it returns −1.

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Assignment 2 [Biparted-Ternary-Search]

Main-Program

Write a main C-function that

1 reads from user an integer n (n ≤ 100000) and then takes
from user n integers in an array (may be unordered);

2 reads another integer x , which is the element being searched;

3 sort the array elements in ascending order using previous
MinMax-Sort program (Refer to Assignment-1);

4 checks whether x resides in the array or not, by using
BiTernarySearch function;

5 prints the location/index where the element x resides in the
array, otherwise print −1 in case it is not found.

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Assignment 3 [Triparted-Ternary-Search]

Consider a variation of binary search where the sorted array
of size n is divided into three parts instead of two parts by
choosing the n/3-th and 2n/3-th elements instead of only
the middle elements. The algorithm is as follows:

Compare v (the element being searched for) with the
n/3-th element

If equal, v found – return

If v is smaller, search first sub-array (0 to n/3− 1)

If v is greater, compare with 2/3-th element

If equal, v found – return

If v is smaller, search middle sub-array (n/3 + 1 to
2n/3− 1)

If v is greater, search third sub-array (2n/3+1 to n− 1)

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Assignment 3 [Triparted-Ternary-Search]

Recursive-Function
Write a recursive C-function
int TriTernarySearch (int A[], int v, int low, int high)
which takes as parameters a sorted array A of integers, two indices low and
high (low ≤ high) in A and the element to be searched for v . The function
returns the index, k (low ≤ k ≤ high), of A if v is found within the indices
low and high (both included) of A, otherwise it returns −1.

Main-Program
Write a main C-function that

1 reads from user an integer n (n ≤ 100000) and then takes from user n
integers in an array (must be in ascending order);

2 reads another integer x , which is the element being searched;

3 checks whether x resides in the array or not, by using TriTernarySearch
function;

4 prints the location/index where the element x resides in the array,
otherwise print −1 in case it is not found.

You do not have to sort the array. Just enter the numbers in sorted order
directly from the keyboard.

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures

Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Thank You

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

