CS19001:
Programming and
Data Structures
Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT

CS19001: Programming and Data Kharagpur
Structures Laboratory

Soumyajit Dey, Aritra Hazra;
CSE, IIT Kharagpur

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.htm

29-Sep-2018

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.html

CS19001:
Programming and
Data Structures
Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Programming Assignments
Complete and submit during lab

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:

Assignment 1 [MinMax-Sort| Progenering et
Write a C-program to perform MinMax-sort over an unordered Laboratory

n-element integer array to make the elements ascending-ordered. Soumyajit Dey,

Aritra Hazra;
CSE, IT
Kharagpur

Procedure

The working of the MinMax-sort is somewhat similar to that of
selection sort. Here, the outer loop runs over (i,) together, where i
ranges from 0 up to (| 5] — 1) and j ranges from (n — 1) down to [7].
For given i, j, largest and smallest elements in the sub-array

Alil, Ali +1],...,A[j — 1], A[j] are found out (both together) and are
swapped with the elements A[j] and A[i], respectively. Thus, during the
first iteration of the outer loop A[n — 1] and A[0] receives the largest
and smallest element in the array, respectively; in the second iteration
A[n — 2] and A[1] receives the second-largest and second-smallest
element, respectively and so on.

Example

{4,5,6,3,1,2} — after iteration 1 of outer loop — {1,5,2,3,4,6}
{1,5,2,3,4,6} — after iteration 2 of outer loop — {1,2,4,3,5,6}
{1,2,4,3,5,6} — after iteration 3 of outer loop — {1,2,3,4,5,6}

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

Assignment 2 [Biparted-Ternary-Search]

Procedure

Consider a variation of binary search where the sorted array of size n is
divided into two parts, but everytime by choosing the n/3-th element
instead of the middle elements. The algorithm is as follows:

@ Compare v (the searched element) with the n/3-th element
@ If equal, v found — return
@ If v is smaller, search first sub-array (0 to n/3 — 1)

@ If v is greater, search middle sub-array (n/3+ 1 to n—1)

Recursive-Function

Write a recursive C-function

int BiTernarySearch (int A[], int v, int low, int high)

which takes as parameters a sorted array A of integers, two indices low
and high (low < high) in A and the element to be searched for v. The

function returns the index, k (low < k < high), of A if v is found within

the indices low and high (both included) of A, otherwise it returns —1.

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures
Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IT
Kharagpur

CS19001:

Assignment 2 [Biparted-Ternary-Search] Programming and

Data Structures
Laboratory

Soumyajit Dey,

Aritra Hazra;

Main-Program CSE, IT

Write a main C-function that

o

© 6 00

Kharagpur

reads from user an integer n (n < 100000) and then takes
from user n integers in an array (may be unordered);

reads another integer x, which is the element being searched;

sort the array elements in ascending order using previous
MinMax-Sort program (Refer to Assignment-1);

checks whether x resides in the array or not, by using
BiTernarySearch function;

prints the location/index where the element x resides in the
array, otherwise print —1 in case it is not found.

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:

Assignment 3 [Triparted-Ternary-Search] Programming and

Data Structures
Laboratory

Consider a variation of binary search where the sorted array Soumyaijit Dey,
Aritra Hazra;

of size n is divided into three parts instead of two parts by CSE, IIT
choosing the n/3-th and 2n/3-th elements instead of only haragur
the middle elements. The algorithm is as follows:

o Compare v (the element being searched for) with the
n/3-th element

If equal, v found — return
If v is smaller, search first sub-array (0 to n/3 — 1)
If v is greater, compare with 2/3-th element

If equal, v found — return

e © ¢ ¢ ¢

If v is smaller, search middle sub-array (n/3 + 1 to
2n/3 — 1)
o If v is greater, search third sub-array (2n/3+1 to n—1)

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:

Assignment 3 [Triparted-Ternary-Search] Programming and

Data Structures
Laboratory

Recursive-Function

Soumyajit Dey,
Wirite a recursive C-function Qutraflaztal
int TriTernarySearch (int A[], int v, int low, int high) Kc,i,i;gl.gr
which takes as parameters a sorted array A of integers, two indices low and
high (low < high) in A and the element to be searched for v. The function
returns the index, k (low < k < high), of A if v is found within the indices
low and high (both included) of A, otherwise it returns —1.

Main-Program
Write a main C-function that

@ reads from user an integer n (n < 100000) and then takes from user n
integers in an array (must be in ascending order);

Q reads another integer x, which is the element being searched;

Q checks whether x resides in the array or not, by using TriTernarySearch
function;

@ prints the location/index where the element x resides in the array,
otherwise print —1 in case it is not found.

You do not have to sort the array. Just enter the numbers in sorted order
directly from the keyboard.

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

CS19001:
Programming and
Data Structures
Laboratory

Soumyajit Dey,
Aritra Hazra;
CSE, IT
Kharagpur

Thank You

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory

