CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_ Autumn2018.html
10-Sep-2018

Programming Assignments Complete and submit during lab

Assignment 1: [Binomial-Sum]

Recall the binomial theorem:

$$
(x+y)^{n}={ }^{n} C_{0} x^{n} y^{0}+\cdots+{ }^{n} C_{i} x^{n-i} y^{i}+\cdots+{ }^{n} C_{n} x^{0} y^{n}
$$

Write a C program which takes as input two reals (floats) x and y , a non-negative integer n and returns the value of $(x+y)^{n}$ as double. Your program should contain the following functions.

- long int factorial(int);
- double power(float, int);
- long int find_ncr(int, int);
- double find_binomial_sum(float, float, int);

You are NOT ALLOWED to use math.h library.
Do not use a large value of n (>10 say) for testing purposes. Otherwise, the factorial computation may overflow.

Assignment 2: [Derive-Poly]

Main C-Program

- From main(), request user to provide the size of array (say n) and all the n array elements (real-valued), $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}$. This will symbolically represent a polynomial as follows,

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{i} x^{i}+\cdots+a_{n-1} x^{n-1} .
$$

- Then ask user to input the order of the derivative (i.e. $k^{\text {th }}$). Please note that, $n \geq k$.
- Print the array elements and the original polynomial, $f(x)$.
- Call derive() with suitable parameters (mentioned below).
- Print new polynomial $f^{k}(x)$ after performing $k^{t h}$ derivative over $f(x)$.

Recursive Function:

void derive(double a[], int n, int k);

- Write a recursive function derive() which takes as argument an array of real numbers, the array size n, and the order of the derivative k.
- When the function returns, the array should contain elements representing the k-th derivative, $f^{k}(x)$, of the original polynomial, $f(x)$. The new polynomial will be symbolically represented as follows, $f^{k}(x)=a_{0}^{\prime}+a_{1}^{\prime} x+a_{2}^{\prime} x^{2}+\cdots+a_{i}^{\prime} x^{i}+\cdots+a_{n-1-k}^{\prime} x^{n-1-k}$.

Assignment 3: [Power-Set]

Write a recursive function which takes as argument an integer n and prints all possible subsets of the set $\{1,2,3, \cdots, n\}$.

- For both the assignments, write suitable main() functions which shall call the respective functions.
- To help you in designing the recursion, the recursion tree is provided next.

Assignment 3: [Power-Set]

recursion tree, $\mathrm{n}=4$

CS19001:

Data Structures
Laboratory
Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur

Thank You

