CS19001: Programming and Data Structures Laboratory

Soumyajit Dey, Aritra Hazra; CSE, IIT Kharagpur

http://cse.iitkgp.ac.in/~aritrah/course/lab/PDS/Autumn2018/CS19101_PDS-Lab_Autumn2018.htm1

> 20-Aug-2018

Programming Assignments Complete and submit during lab

Assignment 1

Write a program which will take as input an integer x and print out the value of x !, factorial of x. We will like to compute factorial of reasonably large integers, say 10,11 , etc.
However, say 15! cannot be stored in a 32-bit integer data type, so for computing factorial, use "double" as a data type and avoid errors.

Assignment 2

Write a program which performs the following.

- requests the user for an integer i.
- prints out the value of sin function inside the interval $[0,2 \pi]$ at $i+1$ uniformly placed points.
- use float as a data type for input and double as a data type for output of sin function (math.h).
- Use "M_Pl", a constant defined in math.h as the value of π. You can directly use it in your code as it is already defined in the header file.

Assignment 2: Expected Output

Enter resolution: 6
$\sin (0.00 \mathrm{pi})=0.000000$
$\sin (0.33 \mathrm{pi})=0.866025$
$\sin (0.67 \mathrm{pi})=0.866025$
$\sin (1.00 \mathrm{pi})=-0.000000$
$\sin (1.33 \mathrm{pi})=-0.866025$
$\sin (1.67 \mathrm{pi})=-0.866025$
$\sin (2.00 \mathrm{pi})=0.000000$

Assignment 3

Ask the user to provide a resolution r which is any float value (preferably smaller than 0.0004). Modify the previous program as follows.

- Stop using the math.h sin function. Note that $\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots$
- Implement a loop for computing the above series where in each iteration one term is +/-
- Break out of loop when the difference between the partial sums computed in the last two iterations is $<r$.
- suppose, $a=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}, b=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}$ and $|a-b| \leq r$, then break from loop and report $[a, b]$ as approximate value of $\sin (x)$ if $a \leq b$ or $[b, a]$ if $b<a$.

Assignment 3: Useful Hints

- For safe handling of precision, use "double" as data type.
- Use fabs() function from math.h for computing modulus.

Assignment 3: Expected Output

Enter resolution: 6
Enter Interval size: 0.0004
Soumyajit Dey,
Aritra Hazra;
CSE, IIT
Kharagpur
my $\sin (0.00 \mathrm{pi})=[0.000000,0.000000]$
$\sin (0.33 \mathrm{pi})=0.866025$
my $\sin (0.33 \mathrm{pi})=[0.866021,0.866295]$
$\sin (0.67 \mathrm{pi})=0.866025$
$\mathrm{my} \sin (0.67 \mathrm{pi})=[0.866023,0.866108]$
$\sin (1.00 \mathrm{pi})=-0.000000$
my $\sin (1.00 \mathrm{pi})=[-0.000001,0.000021]$
$\sin (1.33 \mathrm{pi})=-0.866025$
my $\sin (1.33 \mathrm{pi})=[-0.866126,-0.866020]$
$\sin (1.67 \mathrm{pi})=-0.866025$
$\mathrm{my} \sin (1.67 \mathrm{pi})=[-0.866049,-0.865672]$
$\sin (2.00 \mathrm{pi})=0.000000$
my $\sin (2.00 \mathrm{pi})=[-0.000005,0.000083]$

Thank You

