
Department of Computer Science &
Engineering, IIT Kharagpur

Lecture Notes

Complex Network Theory

CS60078

Rishabh Poddar
08CS1044

Mayank Shrivastava
08CS3029

Lecturer:
Prof. Animesh Mukherjee



Contents

1 Introduction 6

2 Basics of Graph Theory 7
2.1 The Seven Bridges of Königsberg . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Set-Theoretic Definition of Graphs . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Representation of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Paths, Walks and Trails . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Components of a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Complete and Complement Graphs . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Sparse and Dense Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.8 Regular Graphs and Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.9 Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.10 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.11 Average Path Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.12 Articulation Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.13 Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.14 Connection Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.15 Chromatic Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.16 Chordal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Basic Metrics for Network Analysis 14
3.1 Degree Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Cumulative Degree Distribution . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Scale-Free Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Measuring Transitivity: Clustering Coefficient . . . . . . . . . . . . 16

3.3 Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Degree Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Betweenness Centrality . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Flow Betweenness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.4 Eigenvector Centrality . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.5 Katz Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.6 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.6.1 Random Walks . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.7 Hubs and Authorities . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.8 Co-citation Index & Bibliographic Coupling . . . . . . . . . . . . . 23
3.3.9 Closeness Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2



CONTENTS 3

3.4 Reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Rich-Club Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Entropy of Degree Distribution . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Matching Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Social Networks 25

4.1 Assortativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Measuring Assortativity . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Mixing Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Signed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Stability of Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Structural Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Social Cohesiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5.1 Structural Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5.1.1 Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . 30

4.5.1.2 Pearson Correlation Coefficient . . . . . . . . . . . . . . . 30

4.5.1.3 Euclidean Distance . . . . . . . . . . . . . . . . . . . . . . 30

4.5.2 Automorphic Equivalence . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.3 Regular Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.3.1 Computing Regular Equivalence . . . . . . . . . . . . . . 32

4.6 Ego-centric Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Community Structures 34

5.1 Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Agglomerative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.2 Local Algorithm based on Agglomeration . . . . . . . . . . . . . . . 35

5.3 Divisive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 Girvan-Newman Algorithm . . . . . . . . . . . . . . . . . . . . . . 36

5.3.2 Radicchi’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Modularity Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.1 Newman’s Modularity Optimization Algorithm . . . . . . . . . . . 37

5.4.2 Modularity Optimization : Blondel et al. . . . . . . . . . . . . . . . 38

5.5 Infomap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.6 Spectral Bisection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Random Graphs 40

6.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Giant Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3.2 Generating Functions on Graphs . . . . . . . . . . . . . . . . . . . 42

6.3.3 Powers of Generating Functions . . . . . . . . . . . . . . . . . . . . 42

6.4 Degree Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



4 CONTENTS

7 Network Growth Models 44
7.1 Barabási-Albert’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.1.1 Continuum Theory Approach . . . . . . . . . . . . . . . . . . . . . 45
7.1.2 Master/Rate Equation Approach . . . . . . . . . . . . . . . . . . . 46

7.2 Price’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 Non Power Law Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 Configuration Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.5 Small-World Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.5.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.5.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.5.2.1 Clustering Coefficient . . . . . . . . . . . . . . . . . . . . 52
7.5.2.2 Degree Distribution . . . . . . . . . . . . . . . . . . . . . 52
7.5.2.3 Average Path Length . . . . . . . . . . . . . . . . . . . . . 52

7.6 Vertex Copying Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.6.1 Trawling the Web for Cyber-Communities . . . . . . . . . . . . . . 52

7.6.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.6.1.2 The Elimination-Generation Algorithm . . . . . . . . . . . 53

7.6.2 The Model of Kleinberg et al. . . . . . . . . . . . . . . . . . . . . . 53
7.6.2.1 Characterization of the Model . . . . . . . . . . . . . . . . 53
7.6.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Search on Networks - Distributed Hash Tables 55
8.1 Overview on Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 The Chord Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.2.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.2.2 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 Network Dynamics 58
9.1 Protein Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9.1.1 Protein Dynamics from Network Analysis . . . . . . . . . . . . . . 59
9.2 Percolation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

9.2.1 Uniform Random Removal of Nodes . . . . . . . . . . . . . . . . . . 63
9.2.2 Non-Uniform Random Removal of Nodes . . . . . . . . . . . . . . . 65

9.3 Epidemic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.3.1 The Deterministic SIR Model . . . . . . . . . . . . . . . . . . . . . 66
9.3.2 Basic Reproduction Number . . . . . . . . . . . . . . . . . . . . . . 67
9.3.3 Stochastic SIR dynamics . . . . . . . . . . . . . . . . . . . . . . . . 67
9.3.4 Epidemic Spreading on Small-World Networks . . . . . . . . . . . . 68
9.3.5 Epidemic Spreading on Scale-Free Networks . . . . . . . . . . . . . 68

9.4 Ecological Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.4.1 Population Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.4.1.1 Two-Species Resource Consumer Dynamics . . . . . . . . 69
9.4.1.2 The Lotka-Volterra Model . . . . . . . . . . . . . . . . . . 70
9.4.1.3 Food Webs . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.4.2 Robustness of Complex Systems . . . . . . . . . . . . . . . . . . . . 70
9.4.2.1 The Empiricists’ View . . . . . . . . . . . . . . . . . . . . 71
9.4.2.2 The Theorists’ View . . . . . . . . . . . . . . . . . . . . . 71
9.4.2.3 Mathematical Formulation - Theorists’ View . . . . . . . . 72
9.4.2.4 Other Measures of Stability . . . . . . . . . . . . . . . . . 73



CONTENTS 5

9.4.3 Network Structure and Stability . . . . . . . . . . . . . . . . . . . . 73
9.4.4 Modular Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.4.5 Network Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.4.5.1 Wilmers-Sinha-Brede (WSB) Network Assembly Model . . 76



Chapter 1

Introduction

This material contains lecture notes for the course on Complex Network Theory,
Spring 2012, Indian Institute of Technology, Kharagpur. The course was taught by Prof.
Animesh Mukherjee (IIT Kharagpur), and Prof. Sitabhra Sinha (IMS Chennai).
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Chapter 2

Basics of Graph Theory

In this section, we will revise some elementary concepts from graph theory, which will
prove useful in our study of this course.

2.1 The Seven Bridges of Königsberg

The Seven Bridges of Königsberg is a historically notable problem in mathematics. The
city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the
Pregel River, and included two large islands which were connected to each other and the
mainland by seven bridges. The problem was to find a walk through the city that would
cross each bridge once and only once. The islands could not be reached by any route
other than the bridges, and every bridge must have been crossed completely every time;
one could not walk halfway onto the bridge and then turn around and later cross the
other half from the other side. Euler proved that the problem has no solution. There
could be no non-retracing continuous curve that passed through all seven of the bridges.
The difficulty was the development of a technique of analysis and of subsequent tests that
established this assertion with mathematical rigour.

Some practical applications of his problem include - cost of wiring electrical components,
shortest route between cities, matching/resource allocation, task scheduling, and floor
planning and routing (VLSI).

2.2 Set-Theoretic Definition of Graphs

A graph G consists of an ordered tuple G = (V,E), where V is a set of nodes, points, or
vertices; E is a set whose elements are known as edges or lines. E ⊆ V × V . Note that if
E equals V × V , then the graph is complete.

7



8 CHAPTER 2. BASICS OF GRAPH THEORY

2.3 Representation of Graphs

A graph is generally represented in the following two ways: adjacency matrix and
adjacency list.

Figure 2.1: Adjacency matrix representation

Some properties of an adjacency matrix A are as follows. A = {aij}, where i and j are
nodes, and aij = 1 if there is an edge between i and j, else it is 0. The entries of the
matrix A2 denote the number of paths of length 2 between nodes in the graph. Similarly,
entries of An denotes the number of paths of length n. Note that the trace (sum of the
diagonal elements) of the matrix A3 is equal to six times the number of triangles in the
graph.

2.4 Paths, Walks and Trails

A path in a graph is a single vertex or an ordered list of distinct vertices v1, · · · , vk such
that vi−1vi is an edge for all 2 ≤ i ≤ k. No vertex may be repeated.

A walk of length k is a sequence v0, v1, · · · , vk of vertices and edges such that (vi−1, vi) is
an edge for 1 ≤ i ≤ k.

A trail is a walk with no repeated edge.

2.5 Components of a Graph

Let G = (V,E) be an undirected graph. We call G connected if there exists a path
between any two distinct vertices of G.

A strongly connected directed graph is one where each node belonging to the graph
can be reached from every other node via directed paths. A weakly connected directed
graph is one where each node belonging to the graph can be reached from every other
node, disregarding edge directions.

2.6 Complete and Complement Graphs

A complete graph is one in which an edge exists between any 2 vertices, that is, all the
entries in the adjancency matrix are 1. A complete graph with n vertices is denoted as
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Figure 2.2: A graph with 3 components

Kn.

Figure 2.3: K7, a complete graph with 7 vertices

The complement graph G′ of a graph G is a graph such that V (G′) = V (G), and an
edge exists between 2 nodes vi, vj in G′ if there exists no edge between them in G.

2.7 Sparse and Dense Graphs

A graph G(V,E) is called sparse if |E| ≈ |V |; and it is called dense if |E| ≈ |V |2.

2.8 Regular Graphs and Lattices

A regular graph is one in which all the nodes have the same degree, that is, the same
number of edges emanating from the node.
A lattice is a regular graph with vertices coupled to their k nearest neighbours.
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Figure 2.4: The Petersen graph on the left, and its complement graph on the right

Figure 2.5: 0-regular, 1-regular, 2-regular and 3-regular graphs

2.9 Planar Graphs

A graph G is called planar if G can be drawn in the plane with its edges intersecting only
at vertices of G. Such a drawing of G is called an embedding of G in the plane. Note
that of all complete graphs Kn, only K1, K2, K3 and K4 are planar.

2.10 Geodesics

A geodesic from vertex a to vertex b is a path of minimum length between the nodes.
The length of this path is called the geodesic distance between a and b.

The eccentricity of a vertex v is the greatest geodesic distance between v and any other
vertex. The largest eccentricity of any vertex in the graph is called the diameter (d) of
the graph. The radius (r) of a graph is the minimum eccentricity of any vertex.

A central vertex in a graph of radius r is one whose distance from every other ver-
tex in the graph is at most r.

A peripheral vertex in a graph of diameter d is one that is at a distance d from some
other vertex in the graph.
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Figure 2.6: Regular lattice - each node is linked to its four immediate neighbours

Figure 2.7: The graph K4 (extreme left) and its planar embeddings

2.11 Average Path Length

The average path length l is defined as the average of the shortest paths between all nodes
in the network, i.e.,

l = 〈dij〉 =
1

N(N − 1)

∑
i 6=j

dij

If the graph is disconnected, it makes sense to consider the reciprocal of the harmonic
mean; this is because the distance between two nodes belonging to separate components
is infinite, the reciprocal being 0.

l = 〈 1

d−1ij
〉 =

(
1

N(N − 1)

∑
i 6=j

1

dij

)−1

2.12 Articulation Points

An articulation point or cut point is a vertex whose removal increases the number of
components in the graph. Such points are called brokers in social networks. Removal of
brokers creates communities that are totally isolated from each other.
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Figure 2.8: Nodes G and H are articulation points

2.13 Bridges

An edge is called a bridge if its removal increases the number of components in the graph.

Figure 2.9: A graph with 6 bridges (highlighted in red)

2.14 Connection Density

The connection density in a graph is a metric used to estimate the number of connec-
tions in the graph. It is defined as the ratio of the number of edges actually present in
the graph and the maximum number of edges possible.

cd =
|E|(
n
2

) =
2|E|

N(N − 1)

An alternate interpretation of this metric can be the probability that an edge exists
between a randomly chosen pair of vertices.



2.15. CHROMATIC NUMBER 13

Figure 2.10: A 3-coloring for the Petersen graph

2.15 Chromatic Number

A proper colouring of a graph is an assignment of labels to each vertex of the graph such
that no two adjacent vertices receive the same label. The chromatic number of a graph
is the minimum number of colours required to achieve a proper colouring. This concept
finds applications in problems such as job scheduling and register allocation among others.

2.16 Chordal Graphs

A graph is chordal if each of its cycles of four or more nodes has a chord, which is an
edge joining two nodes that are not adjacent in the cycle.

Figure 2.11: A cycle (black) with two chords (green)



Chapter 3

Basic Metrics for Network Analysis

In this section, we describe some metrics that are useful for statistical analysis of complex
networks.

3.1 Degree Distribution

We shall describe the concept of degree distribution with the help of an example. Consider
the case of citation networks. Scientific papers refer to works done earlier on related
topics via citations. In a citation network each node represents a scientific paper and
a directed edge from node A to B indicates that A has cited B. An important thing to
note is that citation networks are acyclic in nature.

Alfred Lotka analysed such networks in 1926. Lotka’s Law describes the frequency
of publication by authors in any given field. It states that the number of authors making
n contributions to that field is approximately n−α of those making 1 contribution, where
α ≈ 2. This distribution is nothing but the distribution of the degrees of the nodes in the
network.

A famous outcome of Lotka’s study was the 80 − 20 Rule, which states that 80% of
the people in such a network are 20% popular, and vice versa.

3.1.1 Definition

Let pk be the fraction of vertices in a network that have degree k. pk can also be interpreted
as the probability that a vertex chosen uniformly at random has degree k. Then, the pk
versus k plot is defined as the degree distribution of the network. For most real world
networks, pk varies as k−α, which is the case for citation networks.

3.1.2 Cumulative Degree Distribution

Due to noise and insufficient data the definition of degree distribution is slightly modified
at times. Instead, we use the cumulative degree distribution, which is plotted as Pk
versus k, where

Pk =
∞∑
k′=k

pk′

14
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Figure 3.1: An example power-law graph, being used to demonstrate ranking of popularity.
To the right is the long tail, and to the left are the few that dominate (also known as the
80-20 rule)

for discrete distributions, while for continuous distributions we have

Pk =

∞∫
k′=k

pk′dk
′

So, Pk can also be interpreted as the probability that the degree of a node selected
uniformly at random is greater than or equal to k.

3.1.3 Scale-Free Functions

A scale-free function f(x)is one in which the independent variable x when rescaled does
not affect the functional form of the original function. Mathematically,

f(ax) = bf(x)

Figure 3.2: Random versus Scale-free network

Power Laws are scale-free functions, that is, at any scale, they still show power law
behaviour. Other examples where such behaviour is manifested include fractals.
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Figure 3.3: The Mandelbrot set is a famous example of a fractal

3.2 Transitivity

A transitive network is one in which for any 3 nodes a, b and c, if there exists an edge
between a and b, and between b and c, then there exists an edge between a and c as well.

3.2.1 Measuring Transitivity: Clustering Coefficient

The clustering coefficient for a vertex v in a network is defined as the ratio between
the total number of connections among the neighbors of v to the total number of possible
connections between the neighbours. Mathematically,

Cv =
L(
n
2

)
where L = the number of actual links between the neighbours of v, and n = the number
of neighbours of v.

The clustering index of the whole network is the average of the clustering coefficients
of all the vertices. That is,

C =
1

N

∑
Cv

Note that higher the clustering index, larger the number of triangles in the network.

Figure 3.4: Local clustering coefficient values
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Figure 3.5: The most important vertices according to degree-centrality (red)

3.3 Centrality

Centrality is a measure indicating the importance of node in the network. Commonly, it
measures the 4 P’s - prestige, prominence, (im)portance and power. We wll get a better
idea of what is meant by importance as the section progresses.

3.3.1 Degree Centrality

Degree centrality is defined as the ratio of the number of neighbours of a vertex with
the total number of neighbours possible. Mathematically,

Degree Centrality =
k

N − 1

where k is the degree of the vertex, and N is the total number of nodes in the network.
The variance of the distribution of degree centrality in a network gives us the central-

ization of the network. One can see that a star network is an ideal centralized network,
whereas a line network is less centralized.

Figure 3.6: Star Network and Line Network

3.3.2 Betweenness Centrality

The degree of a node is not the only measure of the importance of a node in the net-
work, and this centrality measure addresses this fact. This concept was introduced by
Linton Freeman. In his conception, vertices that have a high probability of occuring on
a randomly chosen shortest path between two nodes are said to have high betweenness
centrality.

Formally, centrality of a vertex v is defined as the summation of the geodesic path between
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any two nodes s and t via v, expressed as a fraction of the total number of geodesic paths
between s and t. Mathematically,

g(v) =
∑
s 6=v 6=t

σst(v)

σst

If v is an articulation point, then we can further simplify this as follows. Let the two
components that the removal of v divides the graph into be C1 and C2 with N1 and N2

nodes respectively. Then,

g(v) = 2
∑

s∈C1,t∈C2

σst(v)

σst

= 2
∑

s∈C1,t∈C2

1

= 2N1N2

Removal of a node with high betweenness centrality can lead to increase in the geodesic
path lengths, and in the extreme case, the network might even get disconnected as ex-
hibited in the case above. In real world networks, this can be important; for example, to
prevent the spread of a disease in an epidemic network.

Figure 3.7: Hue (from red=0 to blue=max) shows the node betweenness.

3.3.3 Flow Betweenness

Suppose two nodes are connected by a reluctant broker (cut vertex), that is, the short-
est path between them is blocked. Then, the nodes should use another pathway which is
connecting them, rather than simply using the geodesic path.

The flow betweenness measure thus expands the notion of betweenness centrality. It
assumes that any two nodes would use all the paths connecting them, instead of only
using shortest path. However, it is to be noted that calculating flow betweenness is
computationally intractable.
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3.3.4 Eigenvector Centrality

This metric assigns relative scores to all nodes in the network based on the concept that
connections to high-scoring nodes contribute more to the score of the node in question
than equal connections to low-scoring nodes. For example, consider the context of HIV
transmission. A person x with one sexual partner is seemingly less prone to the disease
than a person y with multiple partners. However, we must also take into account the
number of partners that the sexual partner of x has. That is, it is not enough to merely
gauge the popularity of a particular node on the basis of its degree; we must also take into
account the popularity of its neighbours as well. This is the basic idea of eigenvector
centrality.

We now proceed to define the centrality value of a vertex as a sum of centralities of
its neighbours. To begin with, we initially guess that a vertex i has centrality xi(0). We
gradually improve this estimate by employing a Markov model, and continue in this man-
ner until no more improvement is observed. The improvement made at step t is defined
as,

xi(t) =
∑
j

Aijxj(t− 1)

⇒ x(t) = Ax(t− 1)

= Atx(0)

This is known as the Power Iteration method proposed by Hotelling.
Now, express x(0) as a linear combination of eigenvectors vi of the adjacency matrix A

x(0) =
∑
i

civi

⇒ x(t) = At
∑
i

civi

We know from our knowledge of eigenvectors that Atx = λtx holds, where λ is an eigen-
value. Using this with the equation above, we have

x(t) =
∑
i

λticivi

= λt1
∑
i

(
λi
λ1

)t
civi

⇒ x(t)

λt1
=
∑
i

(
λi
λ1

)t
civi

In the limit t→∞,
(
λi
λ1

)t
remains only for i = 1. Thus,

lim
t→∞

x(t)

λt1
= c1v1

Thus, we get that the limiting centrality is proportional to the principal eigenvector v1.
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Note that directed acyclic networks suffer from the problem of zero centrality. If there
exists a node A with no incoming edges, then this node has zero centrality (the assump-
tion seems reasonable for a web page). Consider another node B that has one incoming
edge from A. Then the eigenvector centrality of B is 0 because A the centrality of A is 0.
Hence, in a similar fashion, all the centralities in an acyclic network become 0. We will
see how this problem is remedied by the Katz Centrality metric.

3.3.5 Katz Centrality

As discussed previously, eigenvector centrality metric suffers from the problem of zero
centrality. Katz Centrality resolves this issue by assigning to each node a priori some
positive centrality value. This is done according to the following equation

xi = α
∑
j

Aijxj + β

Note that α, β > 0. In matrix terms, the above equation is equivalent to

x = αAx + β1

where 1 = (1, 1, · · · , 1)T . On simplifying, we obtain

x = β(I− αA)−11

Instead of inverting the matrix as above, we can alternatively iterate over the following
equation until convergence

x(t) = αAx(t− 1) + β1

3.3.6 PageRank

PageRank is a link analysis algorithm, named after Larry Page and used by the Google
Internet search engine, that assigns a numerical weighting to each element of a hyperlinked
set of documents, such as the World Wide Web. The PageRank of a page is defined re-
cursively and depends on the number and PageRank metric of all pages that link to it.
A page that is linked to by many pages with high PageRank receives a high rank itself.
If there are no links to a web page there is no support for that page.

Simply put, the algorithm can be described as follows. PageRank can be thought of
as a probability distribution representing the likelihood that a person randomly clicking
on links will arrive at any particular page. The PageRank computations require several
passes through the collection to adjust approximate PageRank values to more closely re-
flect the theoretical true value.

Essentially, PageRank is nothing but a variant of Katz Centrality. It can be mathe-
matically expressed as follows.

xi = α
∑
j

Aij
xj
koutj

+ β

where koutj is the out-degree of node j. This normalization is done to obtain a stochastic
matrix (a matrix where either all the rows or all the columns sum to one). Note that
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the above definition does not take into account the possibility of koutj = 0. To solve
this problem, set koutj = 1 in the above calculation, since a vertex with zero out-degree
contributes zero to centralities of other vertices. In matrix terms, we have

x = αAD−1x + β1

⇒ x = β(I− αAD−1)−11

where D is a diagonal matrix such that

Dii = max {kouti , 1}

3.3.6.1 Random Walks

A random walk is a mathematical formalisation of a trajectory that consists of taking
successive random steps. It was introduced by Karl Pearson in 1905.

Random walks are useful to analyze web surfing and to calculate PageRank values. Con-
sider web surfing, initially, every page is chosen uniformly at random. With probability
α, the surfer performs random walk by randomly choosing the hyperlinks in that page,
and with probability 1 − α, the surfer stops the random walk. We already know that
the steady state probabiliity that a web page is visited during web surfing represents its
PageRank.

The transition matrix for web surfing is obtained from the adjacency matrix representing
the underlying graph structure. The transition matrix is a stochastic matrix, all rows
sum to 1, and is thus obtained by dividing each number in each row by the sum of the
elements in that row in the adjacency matrix. Essentially, an entry in the transition ma-
trix represents the probability with which that link is chosen.

As an example, consider the following graph and its equivalent adjacency matrix

 0 1 0
0 0 1
1 1 0



For the above graph, the transition matrix is given as, 0 1 0
0 0 1

1/2 1/2 0


Here, we pictorially show a random walk on this network.
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Figure 3.8: Random walk on the graph

3.3.7 Hubs and Authorities

Hyperlink-Induced Topic Search (HITS) (also known as hubs and authorities)
is a link analysis algorithm that rates Web pages, developed by Jon Kleinberg. It was a
precursor to PageRank. The idea behind Hubs and Authorities stemmed from a particu-
lar insight into the creation of web pages when the Internet was originally forming; that
is, certain web pages, known as hubs, served as large directories that were not actually
authoritative in the information that it held, but were used as compilations of a broad
catalog of information that led users directly to other authoritative pages. In other words,
a good hub represented a page that pointed to many other pages, and a good authority
represented a page that was linked by many different hubs.

The scheme therefore assigns two scores for each page: its authority, which estimates
the value of the content of the page, and its hub value, which estimates the value of its
links to other pages. Mathematically, these two centrality values are expressed as follows.
The authority centrality of a node (xi) is proportional to the sum of hub centralities
of nodes (yj) pointing to it, and is defined as

xi = α
∑
j

Ajiyj

The hub centrality of a node is proportional to the sum of authority centralities of nodes
it points to, and is defined as

yi = β
∑
j

Aijxj

In matrix terms, x = αATy, and y = βAx. Solving these two equations gives us

x = αβATAx

y = αβAATy
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where x converges to the prinicipal eigenvector of ATA, and y converges to the principal
eigenvector of AAT .

3.3.8 Co-citation Index & Bibliographic Coupling

Bibliographic coupling or co-citation occurs when two works reference a common works
in their bibliographies. It is an indication that the two works treat related subject matter.

For example, consider works A & B that both cite works C & D. A & B have never
cited each other, nor have C & D. However, intuitively, there seems to be a latent rela-
tionship between A & B, as well as between C & D. The relationship between A & B is
captured by bibliographic coupling and is equal to AAT . Similarly, the relationship
between C & D is captured by co-citation index and is equal to ATA.

3.3.9 Closeness Centrality

The Closeness Centrality measure uses not only the neighbors of a node to determine
its centrality, but also the neighbors of the neighbors. Therefore, nodes that are not
directly connected to the given node are also considered. Nodes that are not directly con-
nected with the given node receive a lower weight because the intensity of their relation
or their influence is lower.

Formally, closeness centrality is a measure of the mean distance from the given node
i to all other nodes. Let dij be the length of the geodesic path from node i to node j.
Then, the mean geodesic distance from vertex i to the other nodes can be expressed as

li = (N)−1
∑
j

dij

where N = total number of nodes. Note that when j = i, dij = dii = 0; so, it is better to
use

li = (N − 1)−1
∑
i 6=j

dij

The mean geodesic distance gives low values for more central vertices. Therefore, we
consider the reciprocal as the value of the centrality, and

Ci = l−1i =
N∑
j dij

However, this expression suffers from sparsely placed values, and does not account for
disconnected network components. The measure therefore can be further refined by con-
sidering the harmonic mean. The centrality value then becomes

C ′i =

∑
j d
−1
ij

N − 1

3.4 Reciprocity

The concept of reciprocity can be described as follows. If there is a directed edge from
node i to node j in a directed network and there is also an edge from node j to i, then
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the edge from i to j is said to be reciprocated. Pairs of reciprocated edges are called
co-links.

Formally, the reciprocity r is defined as the fraction of edges that are reciprocated.
Thus, it can be expressed as

r =

∑
ij AijAji

m

where m is the total number of edges.

3.5 Rich-Club Coefficient

In a network, when influential people (nodes) come together to collaborate on something,
they form what is called a Rich club. As an example, hubs in a network are generally
densely connected, and form a rich-club.

Formally, the rich-club of degree k of a network G = (V,E) is the set of vertices with
degree greater than k. This can be mathematically expressed as,

R(k) = {v ∈ V |kv > k}

The rich-club coefficient of degree k is given by,

#edge(i, j)

|R(k)||R(k)− 1|
, where (i, j) ∈ R(k)

3.6 Entropy of Degree Distribution

The entropy of the degree distribution of a network provides an average measure of
its heterogeneity. Mathematically, it can be expressed as,

H =
∑
k

pklog(pk)

Intuitively, we can see that the entropy of the degree distribution of a regular graph is 0,
and is maximum for a graph having a degree distribution that is distributed uniformly.

3.7 Matching Index

A matching index can be assigned to each edge in a network in order to quantify the
similarity between the connectivity pattern of the two vertices adjacent to that edge. A
low value of matching index would indicate dissimilar regions of the network, with the
edge serving as a shortcut between distant regions in the network.

Formally, the matching index of edge (i, j) is defined as

µij =

∑
k 6=i,j AikAkj∑

k 6=j Aik +
∑

k 6=iAjk



Chapter 4

Social Networks

In this section, we study properties and metrics that are useful to describe and analyze
social networks.

4.1 Assortativity

Assortativity (also known as homophily) can be described as the preference for a net-
work’s nodes to attach to others that are similar or different in some way. Nodes that are
similar are assortative, and nodes that are different are termed disassortative. Though
the specific measure of similarity may vary, network theorists often examine assortativity
in terms of a node’s degree.

4.1.1 Measuring Assortativity

One means of capturing the degree correlation is by examining the properties of 〈knn〉, or
the average degree of neighbors of a node with degree k. This term is formally defined as

〈knn〉 =
∑
k′

k′P (k′|k)

where P (k′|k) is the the conditional probability that an edge of node degree k points to a
node with degree k′. If this function is increasing, the network is assortative, since it shows
that nodes of high degree connect, on average, to nodes of high degree. Alternatively, if
the function is decreasing, the network is dissortative, since nodes of high degree tend to
connect to nodes of lower degree.

4.1.2 Mixing Patterns

Mixing patterns refer to systematic tendencies of one type of nodes in a network to
connect to another type. Nodes might tend to link to others that are very similar or very
different. Mixing, therefore, can be classified broadly as assortative or disassortative.
Assortative mixing is the tendency for nodes to connect to like nodes, and disassortative
mixing captures the opposite case in which very different nodes are connected.

Node characteristics involved in the process of creating a link between a pair shape a
network’s mixing patterns. Real-world node characteristics are virtually unlimited, but

25
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fall under two headings: discrete and topological. We explore mixing based on discrete
characteristics.

Discrete characteristics of a node are categorical, nominal and qualitative. Commonly
examined characteristics of this type include race, gender and sexual orientation. To
measure the mixing of a network, define eij to be the fraction of edges in a network that
connect nodes of type i to type j. On an undirected network, this quantity is symmetric,
i.e. eij = eji. It satisfies the following sum rules∑

ij

eij = 1,
∑
j

eij = ai,
∑
i

eij = bj

where ai and bi are the fractions of each type of an edge’s end that is attached to nodes of
type i (see Figure). Then, an assortativity coefficient, a measure of the strength of similar-
ity or dissimilarity between two nodes on a set of discrete characteristics can be defined as

r =

∑
i eii −

∑
i aibi

1−
∑

i aibi

This formula yields r = 0 when there is no assortative mixing, and r = 1 when the net-
work is perfectly assortative. If the network is perfectly disassortative, the formula yields

rmin = −
∑

i aibi
1−

∑
i aibi

Figure 4.1: Mixing Patterns

4.2 Signed Graphs

A signed graph is a graph in which each edge has a positive or negative sign. Such graphs
have been used to model social situations, with positive edges representing friendships and
negative edges representing enmities between nodes, which represent people. The sign of
a cycle in the graph is defined to be the product of the signs of its edges; in other words,
a cycle is positive if it contains an even number of negative edges and negative if it
contains an odd number of negative edges. A signed graph, or a subgraph or edge set, is
called balanced if every cycle in it is positive.
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Figure 4.2: Triads (a) & (b) are stable configurations, while (c) & (d) are unstable

4.2.1 Stability of Cycles

Positive cycles are supposed to be stable social situations, whereas negative cycles are
supposed to be unstable. For example, consider the case of triads, or possible 3-cycles.
Then, a stable triad is either three mutual friends, or two friends with a common enemy;
while an unstable 3-cycle is either three mutual enemies, or two enemies who share a
mutual friend. According to the theory, in the case of three mutual enemies, this is
because sharing a common enemy is likely to cause two of the enemies to become friends.
In the case of two enemies sharing a friend, the shared friend is likely to choose one over
the other and turn one of his or her friendships into an enmity.

4.3 Structural Holes

In a social network, structural holes are nodes that separate non-redundant sources of
information, that is sources that are additive rather than overlapping.

Contacs that are strongly connected to each other are likely to have similar informa-
tion and therefore provide redundant information benefits. On the other hand, contacts
that link a manager to the same third parties have same sources of information and
therefore provide redundant information benefit.

4.4 Social Cohesiveness

Social cohesiveness refers to the closeness of the members in the social network. In
graph theoretic terms, it refers to the ”cliquishness” of a graph. However, a complete
clique is too strict to be practical and is rarely observed in social networks. In most real
world groups, there are bound to exist at least a few members who are not connected to
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each other. We define some other relaxed and pratical measures of social cohesiveness.

A k-clique is a maximal set S of nodes in which the geodesic path between every pair
of nodes {u, v} ∈ S is less than or equal to k. As an examples, consider the network in
Figure 4.3.

{a, b, c, f, e} forms a 2-clique, as the node d causes the distance between the nodes c

Figure 4.3: {a, b, c, f, e} forms a 2-clique

and e to be 2, even though it is not a part of the 2-clique. Thus, k-cliques might not be
as cohesive as they look. To resolve this issue, we consider k-clans.

A k-clan is a k-clique in which the subgraph induced by S has diameter less than or
equal to k. In the previous figure, {b, c, d, e, f} forms a 2-clan. Note than {b, e, f} also
induces a subgraph that has diameter 2, but it does not form a 2-clan, as it is not a max-
imal set. If we relax the maximality condition on k-clans, we get a k-club. {a, b, f, e}
forms a k-club in the network. It is easy to see that any k-clan is both a k-clique and a
k-club.

A k-plex is a maximal subset S of nodes such that every member of the set is con-
nected to at least n − k other members, where n is the size of S. In Figure 4.4, we see
that {a, b, e, d} forms a 2-plex.

A k-core of a graph is a maximal subgraph such that each node in the subgraph

Figure 4.4: {a, b, e, d} forms a 2-plex

has at least degree k, as shown in Figure 4.5.
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Figure 4.5: k-cores

4.5 Equivalence

In social networks, the different roles, or positions, or social categories are defined by the
relations among the actors, represented as nodes. Two actors have the same position or
role to the extent that their pattern of relationships with the other actors is the same.
But how does one define such a similarity? To do this, we need to define some measure
of equivalence between actors.

There are many ways in which actors could be defined as equivalent based on their re-
lations with others. Three particular definitions of equivalence have been particularly
useful in applying graph theory to the understanding of social roles and structural posi-
tions, namely, structural equivalence, automorphic equivalence, and regular equivalence.

4.5.1 Structural Equivalence

Two nodes are said to be exactly structurally equivalent if they have the same rela-
tionships with all other nodes, that is, one should be perfectly substitutable by the other.
Simply put, the two must be connected to exactly the same set of neighbors. However,
exact structural equivalence is likely to be rare, particularly in large networks. Therefore,
there is a need to examine the degree of structural equivalence, rather than the sim-
ple presence or absence of exact equivalence.

The degree of equivalence between two nodes i and j can be measured by examining
the number of common neighbors between the two nodes. Formally, it can be expressed
as,

nij =
∑
k

AikAjk

which, incidentally, is nothing but the ijth element of the matrix A2 for undirected graphs.
Note that this is closely related to the cocitation measure in directed networks. Moreover,
since we are measuring the extent of similarity, the above quantity must be appropriately
normalized. Therefore, the measure can be refined by some alternate considerations
which we enumerate below.
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Figure 4.6: Different structural equivalence classes

4.5.1.1 Cosine Similarity

This similarity measure is defined as the inner product of two vectors. That is,

similarity(x, y) = cos θ =
x · y

||x|| ∗ ||y||
Consider the ith and jth rows of the adjacency matrix A as vectors. Then the cosine
similarity between vertices i and j is

σij =

∑
k AikAjk√∑

k A
2
ik

√∑
k A

2
jk

=
nij√
kikj

4.5.1.2 Pearson Correlation Coefficient

The correlation coefficient between rows i and j is defined as

rij =
Cov(Xi, Xj)√

Var(Xi)Var(Xj)

=

∑
k AikAjk −

kikj
n√

ki − k2i
n

√
kj −

k2j
n

4.5.1.3 Euclidean Distance

The Euclidean distance is defined as

dij =
∑
k

(Aik − Ajk)2

For a binary graph, this is nothing but the Hamming distance. Moreover, to get the
required similarity value, we need to normalize dij by the maximum possible distance
between the nodes. This is achieved none of i’s neighbors (ki) match with the j’s neighbors
(kj). Therefore, the similarity value is

similarity =
dij

ki + kj
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4.5.2 Automorphic Equivalence

Automorphic equivalence is not as demanding a definition of similarity as structural equiv-
alence, but is more demanding than regular equivalence. There is a hierarchy of the three
equivalence concepts: any set of structural equivalences are also automorphic and regular
equivalences. Any set of automorphic equivalences are also regular equivalences. Not all
regular equivalences are necessarily automorphic or structural; and not all automorphic
equivalences are necessarily structural.

Formally, two vertices u and v of a labeled graph G are automorphically equiva-
lent if all the vertices can be re-labeled to form an isomorphic graph with the labels of
u and v interchanged. Two automorphically equivalent vertices share exactly the same
label-independent properties.

More intuitively, actors are automorphically equivalent if we can permute the graph in
such a way that exchanging the two actors has no effect on the distances among all actors
in the graph. If we want to assess whether two actors are automorphically equivalent,
we first imagine exchanging their positions in the network. Then, we look and see if, by
changing some other actors as well, we can create a graph in which all of the actors are
the same distance that they were from one another in the original graph.

Figure 4.7: Different automorphic equivalence classes (color-coded)

4.5.3 Regular Equivalence

Regular equivalence is the least restrictive of the three most commonly used definitions
of equivalence. It is, however, probably the most important for the sociologist. This is
because the concept of regular equivalence, and the methods used to identify and describe
regular equivalence sets correspond quite closely to the sociological concept of a role.

Formally, two actors are regularly equivalent if they are equally related to equiva-
lent others. That is, regular equivalence sets are composed of actors who have similar
relations to members of other regular equivalence sets. The concept does not refer to ties
to specific other actors, or to presence in similar sub-graphs; actors are regularly equiva-
lent if they have similar ties to any members of other sets.

The concept is actually more easy to grasp intuitively than formally. Susan is the daughter
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of Inga. Deborah is the daughter of Sally. Susan and Deborah form a regular equivalence
set because each has a tie to a member of the other set. Inga and Sally form a set be-
cause each has a tie to a member of the other set. In regular equivalence, we don’t care
which daughter goes with which mother; what is identified by regular equivalence is the
presence of two sets (which we might label ”mothers” and ”daughters”), each defined by
its relation to the other set. Mothers are mothers because they have daughters; daughters
are daughters because they have mothers.

Figure 4.8: Different regular equivalence classes

4.5.3.1 Computing Regular Equivalence

To compute a measure of regular equivalence, we capture the following notion - vertices
i and j are similar if i has a neighbor k that is itself similar to j. Mathematically,

σij = α
∑
k

Aikσkj + δij

This can be represented in matrix form as

σ = αAσ + I

⇒ σ = (I− αA)−1

4.6 Ego-centric Networks

Social scientists often talk about people’s egocentric networks - the cloud of friends and
acquaintances that one has, which if diagrammed would have one at the center with edges
connecting him/her to other people in his/her life. Such analyses, however, are most com-
monly used in the fields of psychology or social pyschology, ethnographic kinship analysis
or other genealogical studies of relationships between individuals.

To better understand the idea, we need some definitions.

The Ego is an individual focal node. A network has as many egos as it has nodes.
Egos can be persons, groups, organizations, or whole societies.
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The nodes to whom the ego is connected are called the Alters.

The Neighborhood is the collection of the ego and all nodes to whom the ego has
a connection at some path length. In social network analysis, the neighborhood is almost
always one-step; that is, it includes only the ego and its alters. The neighborhood also
includes all of the ties among all of the actors to whom ego has a direct connection. The
boundaries of ego networks are defined in terms of neighborhoods.

The N-step neighborhood expands the definition of the size of the ego’s neighbor-
hood by including all nodes to whom ego has a connection at a path length of N , and all
the connections among all of these actors. Neighborhoods of greater path length than 1
(i.e. egos adjacent nodes) are rarely used in social network analysis. When we use the
term neighborhood here, we mean the one-step neighborhood.



Chapter 5

Community Structures

A network is said to have community structures if the nodes of the network can be
easily grouped into (potentially overlapping) sets of nodes such that each set of nodes is
densely connected internally, while interconnections between these sets are sparse. In this
chapter we study different techniques for the identification of community structures, also
known as clustering. Identification of such structures finds many practical applications,
such as the construction of recommender systems, polarity detection, etc. An important
point to note is that the definition of a community is subjective and largely depends on
the application for which clustering is being performed.

Based on the approach employed, clustering techniques can be broadly categorized into
the following computational methods, agglomerative, divisive and spectral.

Agglomerative techniques make use of a bottom-up approach for clustering. Start-
ing with an empty graph G with N nodes and no edges, edges are iteratively added to
the graph, while maximizing some quantity in the original network.

Divisive techniques make use of a top-down approach, removing certain edges from the
original network so that separate community structures are obtained.

Spectral techniques split the graph into community structures based on eigenvalues /
eigenvectors of the Graph Laplacian.

5.1 Similarity Measures

A crucial step in any algorithm to identify community structures is to select suitable
metrics to measure similarity or dissimilarity between nodes. The goal remains to to
group similar data together, which would constitute a community. However, there is no
single method that works equally well in all applications; it depends on what we want
to find or emphasize in the data. Therefore, correct choice of a similarity measure is
often more important than the clustering algorithm. As discussed in previous chapters,
similarity measures could be obtained as Cosine Similarity, Jaccard’s Coefficient, etc.

34
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5.2 Agglomerative Methods

In this section, we describe some agglomerative approaches towards clustering.

5.2.1 Hierarchical Clustering

The approach is as follows:

1. Start with every data point in a separate cluster

2. Merge the most similar pairs of data points / clusters together, until only a single
cluster remains

The output of the above method is a binary tree, called a dendogram. The root of
this tree is the final cluster, and each original data item is a leaf. Initially, the tree is
empty, containing only the original data items as leaves. Whenever data items / clusters
are merged together, a node is added to the tree (representing this new cluster) with edges
between this new node and its constituent clusters.

As already mentioned, we could have used any of the previously defined measures of
similarity to estimate the distance between data items. However, we need to define a
linkage method that can estimate the distance between clusters. Since a data item can
be thought of as a cluster with a single node, this linkage method will suffice for data
items as well. Here we enumerate the different types of linkages that might be followed
while merging any two clusters:

• Single Linkage: The minimum of all pairwise distances between points in the two
clusters

• Complete Linkage: The maximum of all pairwise distances between points in the
two clusters

• Average Linkage: The average of all pairwise distances between points in the two
clusters

Despite its simplicity, this approach does not scale to large graphs, owing to its O(n3)
time complexity in the worst case. Also, the method is not flexible; steps once taken
cannot be undone. Another problem this approach suffers from is that arbitrary cut-offs
need to be set to arrive at a community structure.

5.2.2 Local Algorithm based on Agglomeration

This algorithm, due to James P. Bagrow, agglomerates nodes one at a time, and maintains
two groups - a community C and a border B consisting of the set of nodes adjacent to
the community, i.e. each node in B has at least one neighbour in C. At each step, a node
from B is chosen and agglomerated into C, then B is update to include any newly dis-
covered nodes. This continues until an appropriate stopping criterion has been satisfied.
Initially, a node is chosen as the source s, and C = {s}, and B contains the neighbours
of s: B = {n(s)}.
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Define the outwardness Ωv(C) of a node v ∈ B from community C as

Ωv(C) =
# of neighbours of v outside C −# of neigbours of v inside C

kv

Now, the algorithm moves that node from B to C whose outwardness value is minimum,
breaking ties at random. B is now updated, and the procedure is repeated until the
stopping criterion has been satisfied.

5.3 Divisive Methods

5.3.1 Girvan-Newman Algorithm

We studied the betweenness of a vertex previously, as a measure of centrality and influ-
ence of nodes in networks. The Girvan-Newman algorithm extends this definition to
the case of edges, defining the edge-betweenness of an edge as the number of shortest
paths between pairs of nodes that run along it. If there is more than one shortest path
between a pair of nodes, each path is assigned equal weight, such that the total weight
of all the paths is equal to unity. If a network contains communities or groups that are
only loosely connected by a few intergroup edges, then all shortest paths between different
communities must go along one of these few edges. Thus, the edges connecting commu-
nities will have high edge betweenness (at least one of them). By removing these edges,
the groups are separated from one another and so the underlying community structure of
the network is revealed.

The algorithm’s steps for community detection are summarized below:

1. The betweenness of all existing edges in the network is calculated first.

2. The edge with the highest betweenness is removed.

3. The betweenness of all edges affected by the removal is recalculated.

4. Steps 2 and 3 are repeated until no edges remain.

The end result of the Girvan-Newman algorithm is a dendogram. As the Girvan-Newman
algorithm runs, the dendogram is produced from the top down.

The crux of this method lies in the computation of the shortest paths. If we use simple
BFS traversal for this computation, then, this can be done in O(m) time for each source
node, totalling to O(mn) time for all the nodes, where m is the number of edges in the
graph. In the worst case, O(m) edges are removed, therefore, the total complexity of the
algorithm is O(m2n), which is equivalent to O(n3) for sparse graphs, and O(n5) for dense
graphs.

5.3.2 Radicchi’s Algorithm

This algorithm is a divisive algorithm that is based on the notion that the number of
triangles formed within communities is much higher than the number of triangles across
communities. The algorithm tries to find the edge clustering coefficient of each edge;
we remove the edge with the smallest value of the coefficient from the network. This
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coefficient is a measure of the number of triangles a particular edge ij is a part of, and is
defined as:

Cij =
Zij + 1

min (ki − 1), (kj − 1)

where Zij = Number of triangles ij is a part of. Note that the denominator of the ex-
pression denotes the maximum number of triangles of which ij could possibly be a part
of, but also 1 is added to the numerator to eliminate the possibility that Cij = 0.

This algorithm runs in time O(m2) as each iteration of the algorithm requires O(m)
computations, and there can be O(m) such iterations.

5.4 Modularity Optimization

Modularity is a metric that measures the strength of division of a network into commu-
nities. Networks with high modularity have dense connections between the nodes within
communities, but sparse connections between nodes in different communitites. Modu-
larity is often used in optimization methods for the detection of community structures.
Intuitively, it can be measured as the total number of in community edges minus the ex-
pected number of edges in the absence of a community structure. Formally, it is defined
as

Q =
1

2m

∑
i,j

(
Aij −

kikj
2m

)
δ(ci, cj)

where m is the total number of edges, ci is the community to which i is assigned, and
δ(ci, cj) is 1, if ci = cj, and 0 otherwise.

Thus, modularity can be used as a stopping criterion in iterative clustering algorithms.
The iterations are performed until modularity reaches a maximum; the point at which
degradation starts is the point where further clustering is not performed.

5.4.1 Newman’s Modularity Optimization Algorithm

The above discussion highlights the use of modularity for the evaluation of computed
communities. However, it can itself be used for the purpose of community identification,
as depicted by the following agglomerative algorithm.

1. Initially, all vertices are kept in separate clusters.

2. Join a pair of clusters, such that this results in the greatest increase or smallest
decrease in the modularity, Q (optimizing ∆Q).

3. Repeat.

Note that this agglomerative algorithm is much faster than the Girvan-Newman edge-
betweenness algorithm; there are O(m) computations per step, and O(n) steps, so the
net complexity is O(mn).
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5.4.2 Modularity Optimization : Blondel et al.

A smarter way of applying modularity optimization due to Blondel et al., is given below.
Each pass of the algorithm comprises two phases: one where modularity is optimized by
allowing only local changes of communities; one where communities found are aggregated
in order to build a new network of communities. The passes are repeated iteratively until
no increase of modularity is possible.

Phase 1

1. All nodes are kept in separate clusters.

2. For each node i, consider all its neighbours j.

3. Check whether placing i in j’s current community increases ∆Q (gain should always
be positive).

4. Place i in the community for which ∆Q is maximum, breaking ties randomly.

5. Continue until ∆Q is 0.

Phase 2

1. Collapse all communities obtained from phase 1 to single nodes.

2. Multiple edges between the newly obtained collapsed communities are replaced by
a single edge of weight equal to the sum of the weights of the edges connecting them
previously.

An obvious question arises regarding the effect of ordering of vertices on the performance
of the algorithm, however, choosing the order does not affect the algorithm much.

5.5 Infomap

Please refer to the PNAS paper titled Maps of random walks on complex networks reveal
community structure for an in-depth analysis of Infomap. Also, refer to this article for
Huffman Coding.

5.6 Spectral Bisection Methods

This method relies on eigenvector analysis. It considers the multiplicity of the eigenvalues
of the matrix under consideration. All components of the principal eigenvector are pos-
itive, whereas for the second eigenvector, some are positive and some are negative, and
this is what the spectral bisection methods use for classification.

The Laplace Matrix, L, is given by D − A, where D is a diagonal matrix with the
degrees of all the vertices on the principal diagonal, and A is the incidence matrix. It can
be noted that an eigenvalue for the laplace matrix is the unit vector v, and the eigenvalue
is 0, as the sum of any row is 0.

L.v = 0v

http://arxiv.org/pdf/0707.0609v3.pdf
http://arxiv.org/pdf/0707.0609v3.pdf
http://en.wikipedia.org/wiki/Huffman_coding
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The incidence matrix, In, gives the relation between the vertices and the edges of a
graph. We state the following results about the incidence matrix,

1. L = InI
T
n , where L is the Laplacian.

2. 0 is an eigenvalue.

3. All eigenvalues λ are positive, and given by λ =
∑
i,j(vi−vj)2∑

i v
2
i

.

As stated earlier, all components of the principal eigenvector are positive, but not so
for the second eigenvector, which is exploited for classification, as shown. If some nodes
fail to be classified, we can use the third eigenvector, or delete nodes that have already
been classified, and repeat on the substrate graph till everything is classified.

Here we present an informal proof of point 3 above, and show how all eigenvalues are
positive. Consider the Laplace matrix L, and an eigenvector v, with the corresponding
eigenvalue λ.

Lv = λv

vTLv = λvTv

=⇒ λ =
vTLv

vTv

=
(vT In)(ITn v)

vTv

The above equation is obtained using point 1 from above. Now, vTv =
∑

i v
2
i , and

(vT In)(ITn v) = Y TY =
∑

i,j(vi − vj)2. Hence we obtain,

λ =

∑
i,j(vi − vj)2∑

i v
2
i

which shows all eigenvalues are positive.



Chapter 6

Random Graphs

In mathematics, a random graph is a graph that is generated by some random process.
The theory of random graphs lies at the intersection between graph theory and probability
theory, and studies the properties of typical random graphs.

6.1 Definition and Properties

Notationally, a random graph of n nodes where every pair of nodes is connected by an
edge with a probability p is represented as G(n, p). We have the following properties for
a random graph G(n, p).

1. The probability that G(n, p) contains exactly m edges in any ensemble is propor-

tional to pm(1− p)(
n
2)−m.

2. The average degree 〈k〉 of the nodes is equal to p(n− 1).

3. The clustering coefficient of G(n, p) is equal to p and is independent of any other
parameter.

4. The probability pk that a node has exactly k neighbours, which is nothing but the
degree distribution of the graph, is equal to

(
n−1
k

)
pk(1 − p)(n−1)−k. In the limit

for large n,the degree distribution can be approximated by the Poisson law, with
pk = e−zzk/k! where z is the average degree of the nodes . Such graphs are therefore
called Poisson random graphs.

5. The average distance d is equal to logz n where z is the average degree 〈k〉. This
equation follows from the observation that zd = n.

6.2 Giant Components

As the name suggests, a giant component is a connected component of a given random
graph that contains a large fraction of the entire graph’s vertices. Given a random graph
G(n, p), lower values of p imply low edge density, and the graph does not contain giant
components. Higher values of p imply high edge density, and we thus observe the emer-
gence of giant components in the graph.

40
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We will now proceed to quantify the fraction of nodes that are part of a giant com-
ponent GC in a random graph G(n, p).

For any node v, let t be the probability with which v does not belong to GC. Then,
the probability that none of v’s neigbors are in GC either is given by tk, where k is the
degree of v.

Again, if no neighbor of v belongs to GC, then v does not belong to GC either. This
observation leads to the following equation:

t =
∞∑
k=0

tkpk

There should be no confusion about the presence of t on both sides of the equation. In
the R.H.S., pk gives the probability that the degree of v is k; tk removes the neighbors of
v from GC; the summation is then done over all possible degrees for v. Thus, the R.H.S.
gives the probability with which no neighbor of v is in GC, which is nothing but t.

For large n, we can substitute pk with the Poisson distribution. Thus,

t =
∞∑
k=0

e−z
tkzk

k!

= e−z
∞∑
k=0

(tz)k

k!

= e−z · etz

= e(t−1)z

⇒ 1− t = 1− e(t−1)z

Let S be the fraction of nodes that belong to GC. Then S = 1− t. Therefore, from the
previous equation we have:

S = 1− e−zS

6.3 Generating Functions

In mathematics, a generating function is a formal power series in one indeterminate,
whose coefficients encode information about a sequence of numbers an that is indexed
by the natural numbers. Generating functions are not functions in the formal sense
of a mapping from a domain to a codomain; the name is merely traditional, and they
are sometimes more correctly called generating series. According to Herbert Wilf,
”A generating function is a clothesline on which we hang up a sequence of numbers for
display.”

6.3.1 Definition

Generating functions are often expressed in closed form (rather than as a series), by some
expression involving operations defined for formal power series. An ordinary generating



42 CHAPTER 6. RANDOM GRAPHS

function is a power series defined as follows:

G(x) =
∞∑
n=0

anx
n

For example, given a set of coefficients {ai} = {1, 1, 1, 1, 0, 0, · · · }, we can encode this
as follows:

G(x) = a0 + a1x+ a2x
2 + a3x

3

= 1 + x+ x2 + x3

=
1− x4

1− x
Thus, we can encode a sequence by a closed form equation (as opposed to a series),

and very easily evaluate the required coefficients. As an example, consider the problem of
finding the coefficient of x2012 in 1

1+3x
. By differentiating the expression 2012 times, and

then substituting x = 0, we get the required coefficient as 32012.

6.3.2 Generating Functions on Graphs

Consider the degree distribution of a graph pk. Then, the generating function for the
graph is given by

G(x) = p0 + p1x+ p2x
2 + · · ·

So, given the generating function of a graph, we can find the degree distribution pk as

pk =
1

k!

[
dk

dxk
(G(x))

]
x=0

Given a random graph G and its generating function G(x), we can find the average
degree 〈k〉 of its nodes as follows,

〈k〉 =
∑
k

kpk

= 0p0 + 1p1 + 2p2 + · · ·
G0(x) = p0 + p1x+ p2x

2 + · · ·
⇒ G′0(x) = p1 + 2p2x+ · · ·
⇒ G′0(1) = 0p0 + 1p1 + 2p2 + · · ·

= 〈k〉

6.3.3 Powers of Generating Functions

Consider the mth power of the function G0(x), which is [G0(x)]m. If we choose m inde-
pendent nodes from a graph, then the probability distribution of the sum of the degrees
of these m nodes is given by [G0(x)]m. For example, if m = 2, then we have

[G0(x)]2 =

[
∞∑
k=0

pkx
k

]2
=
∑
k,j

pkpjx
k+j

= p0p0x
0 + (p0p1 + p1p0)x

1 + (p0p2 + p1p1 + p2p0)x
2 + · · ·
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6.4 Degree Distribution

Random graphs have degree distributions that follow a poisson distribution, which can
be seen from the following derivation. The probability distribution pk is defined as

pk =

(
n

k

)
pk(1− p)n−k

Now, using the theory of generating functions, we can write G0(x) for our graph G as

G0(x) =
∑
k

pkx
k

= (1− p+ px)n

Now, in the limn→+∞, we have that

lim
n→+∞

(1− p+ px)n = exp z(n− 1)

where z = np. On differentiating the above equation k times, we get the poisson distri-
bution for pk.



Chapter 7

Network Growth Models

Many large real world networks are scale-free. If we can capture correctly the processes
that assembled the networks that we see today, then we will obtain their topology correctly
as well. In this chapter, we will explore the mechanism responsible for the emergence of
scale-free networks.

7.1 Barabási-Albert’s Model

Most real world networks decribe open systems which grow by the continuous addition
of new nodes. Also, most real networks exhibit preferential attachment, such that the
likelihood of connecting to a node depends on the node’s degree. These two properties,
growth and preferential attachment, inspired the introduction of the Barabási-Albert
model that generates a scale-free network (has a power-law degree distribution). The
algorithm is as follows:

1. Growth: Starting with a small number (m0) of nodes, at every timestep t we add a
new node with m(≤ m0) edges that link the new node to m different nodes already
present in the system.

2. Preferential Attachment : When choosing the nodes to which the new node connects,
we assume that the probability Π that a new node will be connected to node i
depends on the degree ki of node i, such that

Π(ki) =
ki∑
j kj

After t timesteps, this algorithm results in a network with n = m0 + t nodes, and mt
edges. Also, note that

Π(ki) =
ki∑
j kj

=
ki

2mt−m

≈ ki
2mt

The dynamic properties of the Barabási-Albert model can be addressed using various
analytic approaches. We will describe the continuum theory, and the master/rate equation
approach.

44
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7.1.1 Continuum Theory Approach

The continuum approach calculates the time dependence of the degree ki of a given node
i. This degree will increase every time a new node enters the system and links to node i,
the probability of this process being Π(ki). Assuming that ki is a continuous real variable,
the rate at which ki changes is expected to be proportional to Π(ki). Consequently, ki
satisfies the following equation,

∂ki
∂t

= mΠ(ki)

=
mki
2mt

=
ki
2t

⇒ ∂ki
ki

=
∂t

2t

⇒
∫ ki(t)

ki(ti)

∂ki
ki

=

∫ t

ti

∂t

2t

⇒ ki(t) = m

√
t

ti

Assume a node of degree k. Consider the event that ki(t) < k. Then,

ki(t) < k

⇒m
√
t

ti
< k

⇒ti >
(m
k

) 1
β
t

where β = 1
2
. Now, the density function

P (ti) =
1

n
=

1

m0 + t

. Thus, we have that,

P (ki(t) < k) = P

(
ti >

m1/βt

k1/β

)
= 1− P

(
ti ≤

m1/βt

k1/β

)
= 1− 1

m0 + t
· m

1/βt

k1/β

The degree distribution pk can be obtained using

pk =
∂P (ki(t) < k)

∂k

=
2m1/βt

k1/β+1
· 1

m0 + t

So, pk ∝ 1/(k1/β+1). Putting β = 1/2, we have pk ∝ k−3.
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7.1.2 Master/Rate Equation Approach

This is approach can be summarized mathematically as follows. First, observe that
∑
kpk

denotes the mean degree of a network, and is given by
∑
kpk = 2mt/t = 2m. Therefore,

we have that

Π(k) =
kpk∑
kpk

=
kpk
2m

Recall that m denoted the number of new edges coming in. The number of vertices of
degree k that gain at least one edge

= m
kpk
2m

=
1

2
kpk

This represents the concentration of edges flowing towards nodes of degree k. Additionally
consider the following definitions:

• Out-flux: number of nodes of degree k gaining an edge due to the new node,
becoming nodes of degree k + 1

• In-flux: number of nodes of degree k − 1 gaining an edge due to the new node,
becoming nodes of degree k

Let n be the total number of nodes in the system. Then, the number of nodes of
degree k is given by npk. For the case of outflux, npk decreases, while for the case of
influx, it increases. Let pk,n denote value of pk when there are n nodes in the system.
Then, the net change in npk is governed by the following master equation

(n+ 1)pk,n+1 − npk,n =
k − 1

2
pk−1,n −

k

2
pk,n

The first term on the right hand side denotes the change due to the influx, while the
second term denotes the change that results due to the outflux. In the limiting case, as
n→∞, we have

pk,n+1 ≈ pk,n ≈ pk

Therefore, at the stationary state, the recurrence relation reduces to

pk =
k − 1

2
pk−1 −

k

2
pk

This implies that pk is the solution of the following recursive equation:

pk =


0 for k < m
2/(m+ 2) for k = m
k−1
k+2

pk−1 for k > m
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This gives

pk =
(k − 1)(k − 2)

(k + 2)(k + 1)
pk−2

=
(k − 1)(k − 2) · · ·m

(k + 2)(k + 1) · · · (m+ 3)
pm

=
(k − 1)(k − 2) · · ·m

(k + 2)(k + 1) · · · (m+ 3)

2

m+ 2

=
2m(m+ 1)

k(k + 1)(k + 2)

In the limit of large k, this gives us the power-law degree distribution as pk ∝ k−3.

7.2 Price’s Model

Derek de Solla Price described probably the first example, of what would now be called
a scale-free network. He studied the citation network and discovered that it followed a
power law degree distribution. The model can be described as follows.

• Consider a directed graph of n vertices.

• Let pk be the fraction of vertices, with in-degree k.

• At each step, a new node is added to the system, with a certain out-degree. The
out-degree may vary from one vertex to another, but the mean out-degree is kept
at a constant m.

• The value of m is also the mean in-degree of the network:
∑

k kpk = m

• The probability that a newly appearing node attaches to an old vertex, is propor-
tional to the in-degree k of the old vertex.

Since each vertex starts with in-degree 0, it would forever have 0 probability of gaining
new edges. This problem is circumvented by taking the probability of attachment to a
vertex as k + k0, where k0 is a constant taken as 1. This value of k0 is justified in the
case of citation networks by considering the initial publication of a paper as a citation to
itself. Thus if Π(k) denotes the probability that a new edge attaches to any of the vertex
of degree k, then Π(k) ∝ k + 1. More specifically,

Π(k) =
(k + 1)pk∑
k(k + 1)pk

=
(k + 1)pk
m+ 1

The mean number of new edges per vertex added is simply n, and hence the mean number
of new edges to vertices with current in-degree k is given by mpk(k+ 1)/(m+ 1). Let pk,n
denote the value of pk when n nodes have been added. Then, the change in npk, which is
the number of vertices with in-degree k, is given by

(n+ 1)pk,n+1 − npk,n =
kpk−1,n
m+ 1

m− (k + 1)pk,n
m+ 1

m

=
m

m+ 1
[kpk−1,n − (k + 1)pk,n]
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Looking for stationary solutions as n → ∞, we have pk,n+1 = pk,n = pk. Note that
for vertices of degree k = 0, influx of exactly 1 is possible. We thus have the following
recursive solution

pk =

{
[kpk−1 − (k + 1)pk]m/(m+ 1) for k > 0
1− p0m/(m+ 1) for k = 0

Rearranging we have

p0 =
m+ 1

2m+ 1

and

pk =
kpk−1

2 + k + 1/m

=
k(k − 1) · · · 1

(2 + k + 1/m)(1 + k + 1/m) · · · (3 + 1/m)
p0

=
k(k − 1) · · · 1

(2 + k + 1/m)(1 + k + 1/m) · · · (3 + 1/m)

m+ 1

2m+ 1

=
k(k − 1) · · · 1× (1 + 1/m)

(2 + k + 1/m)(1 + k + 1/m) · · · (3 + 1/m)× (2 + 1/m)

= (1 + 1/m)

[
Γ(k + 1) · (1 + 1/m)

(2 + k + 1/m)(1 + k + 1/m) · · · (1 + 1/m)

]
= (1 + 1/m)

[
Γ(k + 1)Γ(2 + 1/m)

Γ(k + 1 + 2 + 1/m)

]
= (1 + 1/m)β(k + 1, 2 + 1/m)

where the Gamma function, Γ(x+1) = xΓ(x), and the Beta function, β(a, b) = Γ(a)Γ(b)/Γ(a+
b). In the asymptotic limit, Γ(a, b) ≈ a−b. Hence we have the following power law,

pk = (1 +
1

m
)(k + 1)−(2+1/m)

7.3 Non Power Law Models

Every network in the real world does not follow the Power Law. The most striking exam-
ple of such a real world network is the World Wide Web, or the internet.

Pennock et. al. mention that as a whole, the World Wide Web displays a striking
”rich get richer” behavior, with a relatively small number of sites receiving a dispropor-
tionately large share of hyperlink references and traffic. However, hidden in this skewed
global distribution, one can discover a qualitatively different and considerably less biased
link distribution among subcategories of pages. For example, among all university home-
pages or all newspaper homepages.

While the connectivity distribution over the entire web is close to a pure power law,
we find that the distribution within specific categories is typically unimodal on a log scale,
with the location of the mode, and thus the extent of the ”rich get richer” phenomenon,
varying across different categories. Similar distributions occur in many other naturally-
occurring networks, including research paper citations and movie actor collaborations.
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Here we outline a model to explain the existence of such log-normal distributions for
some real world networks.

• Start with a small number of nodes, say m0

• A new node joins in the system in each step. Also, m edges are also introduced
along with this new node.

It is important to note that the above procedure is not the same as the Barabási-Albert
model. The difference between these two is illustrated by the means of the following figure.

Figure 7.1: Describes the working of the Barabási-Albert model, compared with the model
to generate Log-Normal distributions.

The probability that any introduced edge sticks to the node i is given by

Π(ki) =
kiα∑
i ki

+ (1− α)
1

t+m0

where
∑

i ki = 2mt and t is the number of timesteps. The first term on the right hand side
is the contribution due to preferential attachment, whereas the second term represents a
random choice of any of the nodes. That is, α represents the probability for preferential
attachment, whereas 1− α represents the probability of uniform attachment. It can also
be seen that m0 + t is the total number of vertices, and 2mt is the total connectivity at
time t. Substituting for ki, we get that:

Π(ki) =
kiα

2mt
+ (1− α)

1

t+m0

This model however applies only to undirected graphs. To capture directionality, we
define parameters αin and αout, such that

Π(kj) =
kjαin
mt

+ (j − αin)
1

t+m0

Π(ki) =
kiαout
mt

+ (i− αout)
1

t+m0

Using the above defined model, we can now explain the log-normal distribution ob-
tained in the linked network between subcategories of pages. Applying the continuum
theory equations to the above equations we get

pk ∝ k−(1+1/α)
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7.4 Configuration Models

Random graphs can be extended to make them more realistic. Real graphs do not follow
a poisson degree distribution, which leads us to the configuration model.

The model is defined in the following way. We specify a degree distribution pk, such
that pk is the fraction of vertices in the network having degree k. We also choose a degree
sequence, which is a set of n values of the degree ki of vertices i = 1, 2, · · · , n, from this
distribution. This essentially gives us each vertex i in the graph ki, with ”spokes” sticking
out of it, which are the ends of edges-to-be. Pairs of spokes are then chosen at random,
and connected together to obtain the graph. The configuration model is defined as the
ensemble of the graphs so produced, with each having equal weight.

Figure 7.2: Randomly pick up spokes and join together to get the graph.

There are a few important points to grasp about this model. Firstly, pk, in the limit of
the large graph size, is the distribution of degrees of vertices in our graph, but the degree
of the vertex we reach by following a randomly chosen edge on the graph is not given by
pk. Since there are k edges that are incident to a vertex with degree k, we are k times
as likely to be at a vertex with degree k, than to be at a vertex with degree 1. Thus the
degree distribution at the end of a randomly chosen edge is kpk.

We are generally interested in the excess degree, which measures how many edges leave
the vertex other than the one we arrived along. So, the excess degree is one less than the
total degree of the vertex. In the configuration model, the excess degree has a distribution
qk given by

qk =
(k + 1)pk+1∑

k kpk
=

(k + 1)pk+1

z

where z =
∑

k kpk is the mean degree in the network.

Another important point about this model is that the chance of finding a loop in a small
component of the graph goes as n−1. The number of vertices in a non-giant compoenent
is O(n−1), and hence the probability of there being more than one path between any pair
of vertices is also O(n−1).

7.5 Small-World Model

A Small-World network is a type of mathematical graph in which most nodes are not
neighbors of one another, but most nodes can be reached from every other node by a small
number of hops or steps. Specifically, a small-world network is defined to bea network
where the typical distance L between two randomly chosen nodes grows proportionally
to the logarithm of the number of nodes N in the network,

L ∝ logN
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7.5.1 Construction

This model was proposed by Watts and Strogatz. Small-world networks start by position-
ing a network built on a low-dimension regular lattice, and then adding or moving edges
to create ”shortcuts” that join remote parts of the lattices to each another.

Figure 7.3: (a) A one-dimensional lattice with connections between all vertex pairs sep-
arated by k or fewer lattice spacing. (b) Choose at random a fraction p of the edges
in the graph and move one end of each to a new location chosen randomly. (c) Short-
cuts are added randomly between vertices, but no edges are removed from the underlying
one-dimensional lattice.

Consider the case of a one-dimensional lattice of L vertices with a ring and each vertex
joined to neighbours k or fewer lattice spacings away. Such a lattice is shown in Figure
7.2(a), with a total of Lk edges. The small-word model is then created by taking all edges
in this graph, and with a probability p, moving one end of that edge to a new location
chosen at random, such that no double edges or self-loops are created. This is shown in
Figure 7.2(b).

This ”rewiring” process allows the small-world network to interpolate between a regu-
lar lattice and a random graph, based on the value of p. When p = 0, we have a regular
lattice, with a clustering coefficient of C = (3k − 3)/(4k − 2), which tends to 3/4 for
large k. The mean geodesic distance tends to L/4k for large L, and thus it does not
show the small-world effect. For p = 1, each edge is rewired to a new location, and the
resulting graph is almost a random graph, with typical geodesic distances of the order
of logL/ log k, but with low clustering coefficient of C ≈ 2k/L. There exists a sizeable
region between these two extremes for which the model has both low path lengths and
high transitivity.

A modified version of the Watts-Strogatz model was proposed by Newman and Watts.
In this variant, no edges are rewired, instead, ”shortcut” edges between randomly cho-
sen pairs of vertices are added to the low-dimension lattice. The mean total number of
shortcuts is Lkp, and the mean degree is 2Lk(1 + p). This version of the model also has
the property that no edge can ever become disconnected from the network, and hance the
mean vertex-vertex distance is always finite. This version is shown in Figure 7.2(c).

7.5.2 Properties

In the following we will summarize the main results regarding the properties of small-world
models.
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7.5.2.1 Clustering Coefficient

The clustering coefficient for the Watts Strogatz model can be calculated easily, and is
numerically given by

C =
3(k − 1)

2(2k − 1)
(1− p)3

7.5.2.2 Degree Distribution

The degree distribution of small-world model does not match most real-world networks
very well, but this is not surprising, as this was not a goal of the model in the first place.
The expression for degree distribution is rather complicated and given by

pj =

min(j−k,k)∑
n=0

(
k

n

)
(1− p)npk−n (pk)j−k−n

(j − k − n)!
e−pk

7.5.2.3 Average Path Length

There does not exist an exact solution to the value of the average path length l, however,
small-world behaviour is exhibited when l ∝ logL.

7.6 Vertex Copying Models

Kleinberg et al. proposed that many real networks grow, at least in part, by the copying
of vertices. We proceed to describe the basis of such a model next.

7.6.1 Trawling the Web for Cyber-Communities

Algorithms such as the HITS algorithm, essentially are search algorithms designed to
find high-quality pages (authorities) about a fixed topic. How should one extend such
algorithms if the need is to enumerate all topics (under a certain definition)?

7.6.1.1 Definition

We first need to carefully define what is meant by a topic in the web graph. Note that
each topic present in the web graph structure can be detected by looking for complete
bipartite graphs Ki,j in the graph (see Figure 7.3 for an example).

Define a bipartite core Ci,j to be a graph on i+ j nodes, such that it contains Ki,j as a
subgraph. This notion is motivated by the fact that for any well represented topic on the
Web, for appropriate values of i and j, there will exist a bipartite core for it on the Web
graph. Figure 7.3 shows C4,3 in which the nodes on the left connect to the home pages of
major aircraft manufacturers. Subgraphs like these represent cyber-communities. In the
given case, the nodes on the left represent aficionados of commercial aircraft manufactur-
ers. These nodes create hub-like pages, which co-cite the authority-like pages on the right.

It is important to note that the hub pages may not co-cite all the authority pages in
such cyber-communities, but, every such community will contain a bipartite core Ci,j for
non-trivial values of i and j. This process of enumerating all possible bipartite cores in
the web for some fixed value of i and j is called trawling.
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Figure 7.4: An example of C4,3

7.6.1.2 The Elimination-Generation Algorithm

An algorithmic paradigm called the elimination-generation paradigm is used for the
purpose of trawling. The algorithm makes a number of passes over the Web graph. The
paradigm is explained below in the context of the core C4,4.

• Elimination: For C4,4, no nodes with indegree ¡ 4 are allowed in the right hand
side of the core. Similarly, no nodes with outdegree ¡ 4 are allowed on the left hand
side. All such nodes are pruned from the graph.

• Generation: For C4,4, a node u is termed as barely acceptable / qualified if its
indegree = 4. Find all such u’s. If the 4 nodes pointing to u have a neighborhood
intersection of size 4, then u belongs to C4,4.

The above mentioned algorithm makes several passes through the web graph, eliminating
nodes in each pass. In most of the experiments, the benefits of elimination / generation
tail off as fewer and fewer nodes are eliminated at each phase, and the algorithm stops
after some time.

7.6.2 The Model of Kleinberg et al.

The structures described in the previous section appear to be a fundamental by-product
of the manner in which Web content is created. In this section, we describe a framework
for a class of random graph models in which the presence of these structures is established.

7.6.2.1 Characterization of the Model

The model is characterized by four stochastic processes:

1. Vertec creation Vc: At each step, a node is created with probability αc(t).

2. Vertex deletion Vd: At each step, delete a node with probability αd(t) along with
all the edges incident on the node.

3. Edge creation Ec: At each step, randomly select a node v and a constant m
denoting the number of edges to be added. With probablility β add m edges from v
to nodes chosen independently and at random. Alternatively, with probablity 1−β
select any node u and copy its out-links to v. In this case, if outdegree(u) < m,
then choose other connections for v randomly. If outdegree(u) > m, then randomly
choose a subset of the edges of u.
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4. Edge deletion Ed: At each step, delete a randomly chosen node with probability
δ. Note that this is essentially a replica of the node deletion process.

7.6.2.2 Analysis

Let us analyze the cases under which a node i gains an edge. This can happen in the
following two ways:

• i is the randomly chosen node. Let Puni be the probability with which this event
occurs.

• i is an indegree neighbor of u, the vertex selected vertex. Let Pcopy denote the
probability with which this occurs.

Assume that there are n nodes in the system at this step. Then we have the following
observations:

Puni =
m(1− β)

n

Pcopy =
βqi
n

where qi is the indegree of i in the second event. Therefore, the total probability with
which a node i gains an edge is given by

Ptotal = Puni + Pcopy

=
m(1− β)

n
+
βqi
n

Let pq,n denote the fraction of nodes with indegree q when there are n nodes in the system.
Then, the number of nodes of indegree q = npq,n. The expected no. of nodes of indegree
q gaining an edge is given by

E = npq,n × Ptotal

= npq,n ×
m(1− β) + βqi

n

Observe that for the case that i = 0 (i.e. it is the first node, and n = 1), we have that

q0 = m(
1

β
− 1)

⇒ β =
m

q0 +m

Thus,

E = npq,n ×
1

n

[
qi

m

q0 +m
+m

(
1− m

q0 +m

)]
= pq,n ×

m(qi + q0)

q0 +m



Chapter 8

Search on Networks - Distributed
Hash Tables

A number of methods can be employed for performing search on networks, some ex-
amples being PageRank, HITS, and the Elimination-Generation model. However, such
techniques are unsuitable for peer-to-peer networks because of the follwoing reasons -
there is no synchronized source, and all nodes are equivalent in functionality (in the sense
that any node can act as the client or server). Therefore, a fundamental problem that
confronts peer-to-peer applications is to efficiently locate a node that stores a particular
data item. The problem is solved by making use of distributed hash tables.

A distributed hash table (DHT) is a class of a decentralized distributed system that
provides a lookup service similar to a hash table; (key, value) pairs are stored in a DHT,
and any participating node can efficiently retrieve the value associated with a given key.
Responsibility for maintaining the mapping from keys to values is distributed among the
nodes, in such a way that a change in the set of participants causes a minimal amount
of disruption. This allows a DHT to scale to extremely large numbers of nodes and to
handle continual node arrivals, departures, and failures. An example of such a service is
Chord - a scalable P2P lookup protocol for internet applications.

8.1 Overview on Hash Functions

Simply put, a hash function is any algorithm or subroutine that maps data sets of vari-
able length, called keys, to data sets of a fixed length. The values returned by a hash
function are called hash values, or simply hashes.

Hash functions are primarily used in hash tables, to quickly locate a data record given
its search key. Specifically, the hash function is used to map the search key to the hash.
The index gives the place where the corresponding record should be stored. In general,
a hashing function may map several different keys to the same index. Additionally, a
good hash function f must satisfy the following properties - computation of the inverse
function f−1 should be difficult, and the function should be collision-free.

Like most hashing schemes, consistent hashing assigns a set of items to buckets so
that each bucket receives almost the same number of items. But unlike standard hashing
schemes, a small change in buckets does not induce a total remapping of items to bucket.
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By using consistent hashing, only K/n keys need to be remapped on average, where K is
the number of keys, and n is the number of buckets.

8.2 The Chord Protocol

A distributed hash table stores key-value pairs by assigning keys to different computers
(or nodes); a node will store the values for all the keys for which it is responsible. Chord
specifies how keys are assigned to nodes, and how a node can discover the value for a
given key by first locating the node responsible for that key.

8.2.1 Construction

The Chord protocol assigns each node and key an m-bit identifier using a base hash
function such as SHA-1. This is done as follows:

• Each node (or computer) is mapped to an identifier by hashing the IP address of
the node. The mapping is done using the SHA-1 hashing algorithm.

• Each key (or data item) is also hashed using SHA-1 to get an identifier.

Note that both the above sets of identifiers belong to the same identifier space. Also,
the identifier length m must be large enough so that the probability of two nodes or keys
hashing to the same identifier is negligible.

Next, keys are assigned to nodes as follows.

• All possible identifiers are arranged in an identifier circle modulo 2m. Because the
identifiers are of length m-bits, there can be 2m possible values, ranging from 0 to
2m − 1.

• Key k is assigned to the first node whose identifier is equal to or follows (the identifer
of) k in the identifer circle. This node is denoted as successor(k).

Note that successor(k) is the first node clockwise from k in the identifier circle, including
k. Figure 8.1 shows an identifier circle with m = 3. The circle has three nodes: 0, 1, and
3. The successor of identifier 1 is node 1, so key 1 would be located at node 1. Similarly,
key 2 would be located at node 3, and key 6 at node 0.

Consistent hashing (as in SHA-1) is designed to let nodes enter and leave the network
with minimal disruption. When a node n joins the network, certain keys previously
assigned to n’s successor now become assigned to n. When node n leaves the network,
all of its assigned keys are reassigned to n’s successor. No other changes in assignment of
keys to nodes need occur. In the example above, if a node were to join with identifier 7,
it would capture the key with identifier 6 from the node with identifier 0.

8.2.2 Search

The Chord protocol requires each node to keep a finger table, containing up to m entries.
The ith entry of node n will contain the address of successor((n+ 2i−1) mod 2m), where
1 ≤ i ≤ m. With such a finger table, the number of nodes that must be contacted to
find a successor in an N -node network is O(log(N)). As an example, figure 8.2 shows the
finger tables for the nodes 0, 1 and 3.
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Figure 8.1: An identifier circle consisting of three nodes 0, 1, and 3. In this example, key
1 is located at node 1, key 2 at node 3, and key 6 at node 0.

Figure 8.2: Finger tables and key locations for a network with nodes 0, 1, and 3, and keys
1, 2, and 6.



Chapter 9

Network Dynamics

9.1 Protein Networks

This section deals with the use of graph theory to investigate protein structure and dy-
namics. Networks appear at all scales in biology, from the microscopic networks in case
of proteins, to food webs involving a variety of species. A protein in its unfolded form
essentially contains only covalent interactions amongs atoms, but an active protein which
has folded into a proper structure, forms a network of non-covalent interactions (links)
between amino acids (nodes).

To model such networks, we can use a regular lattice or grid, having high clustering,
but a large average path length, or random networks from graph theory, having low aver-
age path length, and low coefficient of clustering. However, most empirical networks are
not random, and possess certain structural patterns, eg. Small-World networks.

Figure 9.1: Kirbac 1.1 Potassium ion Channel Protein

We consider the example of Kirbac1.1 Potassium ion channel protein. It comprises
of 4 identical sub-units, which interact amongst each other to generate the protein net-
work. The protein contact network is constructed using structural data from the Protein
Database (PDB). Using this data, we can calculate the Euclidean distance between each
pair of amino acids P = (px, py, pz) andQ = (qx, qy, qz) as

√
(px − qx)2 + (py − qy)2 + (pz − qz)2.

These distances can then be used to obtain the distance matrix, and the adjacency matrix.
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Figure 9.2: The adjacency matrix for the protein contact network

The magnification of the adjacency matrix for a sub-unit reveals an underlying mod-
ular structure present in the network. The degree distribution of this network is not
scale-free, but high degree nodes (hubs) do exist.

Figure 9.3: Magnification of a sub-unit reveals a modular structure

We observe an important feature in the protein network. The protein contact network
is a small-world network, as it has low average path length and high clustering coef-
ficient. The genesis of small-world nature is from the existence of cross-links as a result
of the folding of the protein. These cross links are essentially van der Waals forces of
attraction between nearby atoms. These cross links are also functionally important, as
they provide structural stability to the protein.

9.1.1 Protein Dynamics from Network Analysis

We consider a protein as an elastic network of balls (C-α atoms), that are connected
together by springs (chemical interactions). Now, under the harmonic potential approxi-
mations, we get

V (x) ≈ V (x = x0) +
1

2
(x− x0)2

∂2V

∂x2
+ · · ·

Potential energy of the network, V is k
2

∑
i,j=1,2,···N(Rij − R0

ij)
2, k being the force con-

stant. This can be written as V = k
2

∑
i,j=1,2,···N(∆Ri − ∆Rj)

2, where Rij = Ri − Rj =

(R0
ij + ∆Ri −∆Rj).
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Figure 9.4: dcumulative(M,P ) = d(M,S) + d(S, P )

In vector notation, the potential energy of the network can be written as V =
k
2
(dR)TL(dR), where dR is the column vector of fluctuations, or displacements from

the equilibrium, and L is the Laplacian or Kirchoff matrix. The entries of this matrix
are

Lij =


0 if dij ¿ cut-off
−1 if dij ¡ cut-off
degree(i) for i = j

The vibrational normal modes of the protein are governed by the eigenvalues of L, and
a small eigenvalue implies greater large-scale motion. This can be seen in case of the Kir-
bac 1.1 protein. The spectrum of eigenvalues for L shows 4 very small eigenvalues, which
indicate the dominance of largest scale motion by these 4 sub-units. Other large scale
motions are possible dominated by the modular structure of the network. Eigenvector
components corresponding to the smallest eigenvalues indicate how the module motions
are correlated.

The Protein Contact Network also contains links that correspond to the backbone
structure of the protein, and does not give us much information about the folded tertiary
structure of the protein. To focus on the cross-links, we need to compute the Long-Range
Interaction Network (PCN), obtained from the PCN by excluding links among spatially
neighbouring nodes along the backbone.

The first step in constructing the LIN is to obtain the Cumulative Distance Ma-
trix (CDM), which carries the euclidean distances between all pairs of C-α atoms. An
example for this is shown in Figure 9.4. The CDM is then used to obtain the Back-
bone Adjacency Matrix (BAM), from the CDM by retaining only those links which
correspond to Euclidean distance < 10Å. Finally, the LIN is obtained from the PCN by
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keeping those links which do not appear in the BAM.

Using PCN and LIN, we can now identify the network core of the proteins, which
can contain functionally critical residues. We notice that many networks possess a core-
periphery organization, as shown. We can use a technique, called k-Core Decomposition,
to obtain the fundamental structural organization of a complex network through a pro-
cess of successive pruning. An iterative procedure to determine the k-core (subnetwork
containing all nodes that have degree atleast equal to k) is as follows:

1. To remove all nods having degree less than k.

2. Check the resulting network to see if any of the remaining nodes now have degree
less than k as a result of step 1, if so,

3. Repeat steps 1 and 2 untill all remaining nodes have degree at least equal to k.

Figure 9.5: Network showing the core periphery organization, and it’s k-core decomposi-
tion

Residues belonging to the core of a protein are functionally important, eg. as lig-
and binding sites or for imparting structural stability. These cores are also relevant for
pharmaceutical treatment of infectious diseases.

Figure 9.6: A comparison of different node specific measures of importance
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Figure 9.7: k-Core Decomposition of a protein
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Figure 9.8: k-Core Decomposition of a protein (contd.)

9.2 Percolation Theory

A percolation process is one in which vertices or edges on a graph are randomly des-
ignated either “occupied” or “unoccupied” and one asks about various properties of the
resulting patterns of vertices. One of the main motivations for the percolation model
when it was first proposed in the 1950s was the modeling of the spread of disease. We
will first discuss its simple application to the question of network resilience.

Real-world networks are found often to be highly resilient to the random deletion of their
vertices. Resilience can be measured in different ways, but perhaps the simplest indicator
of resilience in a network is the variation (or lack of variation) in the fraction of vertices in
the largest component of the network, which we equate with the giant component in our
models. If one is thinking of a communication network, for example, in which the existence
of a connecting path between two vertices means that those two can communicate with
one another, then the vertices in the giant component can communicate with an extensive
fraction of the entire network, while those in the small components can communicate with
only a few others at most. The problem of resilience to random failure of vertices in a
network is equivalent to a site percolation process on the network, while that of failure
of edges is equivalent to bond percolation. Vertices are randomly occupied (function-
ing) or unoccupied (failed), and the number of vertices remaining that can successfully
communicate is precisely the giant component of the corresponding percolation model.

9.2.1 Uniform Random Removal of Nodes

Let φ denote the occupation probability, which is the probability that a node is present in
the network (functioning). When φ = 0 then none of the vertices are present (or function-
ing). When φ = 1 then all the vertices are present.Also, let φc denote the critical value of
φ at which a percolation transition occurs, and the network transforms from containing a
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giant cluster to one without a giant cluster.

Consider the configuration model with degree distribution pk. Let u denote the aver-
age probability that a node is not connected to the giant cluster via a neighbor.

• If a node has degree k, then the total probability that it is not connected to the
giant cluster is uk.

• The average probability of not being connected to the giant cluster for any node =∑
pku

k = g0(u), where g0 is a generating function.

• The average probability that a vertex does not belong to a giant cluster for any
node = 1− g0(u).

• Total fraction of the network belonging to the giant cluster is given by S = φ[1 −
g0(u)].

We can calculate u as follows. For a vertex, there are 2 ways of being connected to the
giant cluster via a node x.

1. x has been reomoved (probability 1− φ)

2. x has not been removed but x does not connect to the giant cluster through any of
its k neighbors (probability φuk)

The probability that the vertex is not connected to the giant cluster via node x =
1− φ+ φuk.

The probability that the neighboring vertex is connected to k other nodes is denoted
by the excess degree distribution qk.

Let L be the total no. of links in the network. Then 2L =
∑
ki. The probability

that the vertex has an edge at a particular vertex of degree k is k/(2L − 1) ≈ k/2L
for large L. The total number of vertices of degree k = Npk. Then, the probability of
attaching to any vertex of degree k

= Npk
k

2L

=
pkk

〈k〉
The excess degree of a vertex reached by travelling along an edge is equivalent to the
probability of arriving at a vertex with degree k + 1. Thus,

qk =
pk+1(k + 1)

〈k〉
Averaging over the degree distribution, we have that

u =
∞∑
k=0

qk(1− φ+ φuk)

= 1− φ+ φ
∞∑
k=0

qku
k

= 1− φ+ φg1(u)
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where g1(u) = 1−
∑∞

k=0 qku
k. Note that g1(u) is non-negative because the coefficients are

positive. Also, it is an increasing function as the derivatives are non-negative.

A trivial solution for u then is u = 1 (or S = 0) for which a giant cluster does not
exist. For u 6= 1, a solution exists implies that a giant cluster exists.

We calculate the percolation threshold φc as follows:

d

du
(1− φ+ φg1(u))

∣∣∣∣
u=1

= 1

⇒ φc =
1

g′1(1)

Now,

g1(u) =
∞∑
k=0

qku
k

=
∞∑
k=0

(k + 1)pk+1

〈k〉
uk

⇒ d

du
g1(u)

∣∣∣∣
u=1

=
1

〈k〉

∞∑
k=0

k(k + 1)pk+1

=
1

〈k〉

∞∑
k=0

k(k − 1)pk

=
1

〈k〉

[
∞∑
k=0

k2pk −
∞∑
k=0

kpk

]
Therefore, we have that

φc =
〈k〉

〈k2〉 − 〈k〉
A network is structurally robust if it can tolerate the loss of a large fraction of its

vertices without significant decline in function, i.e. if it has very low φc, which can be
obtained by making 〈k2〉 large.

Therefore, for dynamical stability we need to minimize kmax and maximize 〈k2〉.

9.2.2 Non-Uniform Random Removal of Nodes

In non-uniform removal, the occupation probability of a vertex depends on its degree k,
and is denoted as φk. Then the probability that a vertex of degree k is part of the giant
cluster is = φk(1− uk). Thus, the total fraction of vertices belonging to the giant cluster
is given by

S =
∞∑
k=0

pkφk(1− uk)

=
∑
k

pkφk −
∑
k

pkφku
k

= f0(1)− f0(u)
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where f0(u) =
∑

k pkφku
k, and f0(1) =

∑
k pkφk = φ′, the average probability that a

vertex is occupied.

The average probability u that a vertex won’t belong to the giant cluster via a neigh-
bor is

u =
∑

qk(1− φk+1 + φk+1u
k)

= 1− f1(1) + f1(u)

where f1(u) =
∑
qkφk + 1uk = f ′0(u)/g′0(1).

9.3 Epidemic Networks

The study of epidemic disease has always been a topic where biological issues mix with
social ones. An Epidemic model is a simplified means of describing the transmission of
communicable disease through individuals. Epidemic models can be described on multiple
scales:

• Homogeneous Mixing: No consideration of spatial or social structure in a com-
munity

• Social Structure: Individuals grouped according to demographic properties such
as age, gender, etc.

• Contact Networks Models: Agents affect those who are in direct contact with
them

• Multi-scale Models: Spreading between communities in different spatial locations

• Agent-Based Models: Detailed consideration of spatial movements and interper-
sonal contact

9.3.1 The Deterministic SIR Model

Consider modeling the spread of an epidemic by direct contact. The model assumes that
an individual node in the network goes through three potential stages during the course
of the epidemic.

1. Susceptibility: Let S(t) denote the susceptible population at time t, and have not
yet been infected

2. Infection: Let I(t) denote the infected population at time t, who are capable of
spreading the disease to the susceptible population

3. Recovery: Let R(t) denote the recovered population at time t, who have recovered
from the disease and will neither be infected again nor be able to transmit the
disease to others.
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If N be the total size of the population, the S + I + R = N . Under the assumption of
homogeneous mixing, i.e. anyone is likely to infect anyone else, we have the following rate
equations:

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

where β = rate of infection spreading, γ = recovery rate = τ−1 (τ is defined as the average
infectious period). Note that at t = 0, we have S = N , the total population. Also, the
epidemic spreads if dI/dt > 0, i.e. S(t = 0) > γ/β.

9.3.2 Basic Reproduction Number

There is a threshold quantity which determines whether an epidemic occurs or the disease
simply dies out. This quantity is called the basic reproduction number. Let R(t) be the
effective reproduction number, denoting the average number of new infections per
infected person. Then the basic reproduction number R0 is defined as

R0 = R(t = 0) = Nβτ

R0 represents the mean number of new infections caused by a single infectious individual
in a wholly susceptible population (as in the beginning of an epidemic). If each infected
person on average infects more than one other individual, then the epidemic will spread.
Thus, we can say that the epidemic spreads if R0 > 1; and it will die out in the long run
if R0 < 1.

We can estimate the value of R0 using the following frequently used approach:

• Fit an exponential function to the incidence data to obtain the exponential growth
rate λ, and,

• Use the approximate relation R0 ≈ exp(λτg), where τg is the observed mean gen-
eration interval of the epidemic (defined as ”the sum of the average latent and the
average infectious period”).

For small λτg we can further approximate R0 ≈ 1 + λτg.

9.3.3 Stochastic SIR dynamics

Transmission of infection and recovery are essentially stochastic processes. The determin-
istic SIR model does not account for fluctuations, particularly important at the beginning
of an epidemic when I is small. The stochastic infection dynamics can be modeled as:

Infection: S + I
α−→ 2I Recovery: I

β−→ 0

where α: infection rate, β: recovery rate. We are interested in the value of p(S, I; t) - the
probability of finding S susceptibles and I infected in a population of size N at time t.
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The master equation for the evolution of this probability id given by:

∂tp(S, I; t) =
α

N
(S + 1)(I − 1)p(S + 1, I − 1; t) + β(I + 1)p(S, I + 1; t)

−
( α
N
SIp− βI

)
p(S, I; t)

with the initial condition as p(S, I; t = t0) = δI,I0δS,N−I0 . In the limit for large N , this
approaches the deterministic SIR model results because the fluctuations decay as

√
N−1.

9.3.4 Epidemic Spreading on Small-World Networks

In reality, social relations and physical / geographical proximity make some people more
likely to be infected that others. Therefore, we need to go beyond the assumptions of
homogeneous mixing. It becomes Important to consider either or both of the following
effects in any realistic model of epidemic spreading:

1. Role of contact structure (spreading through a network), and

2. Role of space (diffusion of an epidemic front)

This can be done be considering SIR dynamics on Watts and Strogatz networks (small-
world networks).

Epidemics spread much faster on WS networks than an equivalent regular network, and
are far more difficult to control by partial removal of nodes than on a random network.
This is because the presence of shortcut links make the transport fast. Unlike a random
network, where every node is more or less equivalent, so that removing a certain fraction
of susceptible agents (making R < 1) ensures the epidemic dies, here the few nodes that
are terminals of shortcut links are principally responsible for rapid transit of infection.
For efficient control of epidemic on WS networks, it is necessary to identify the shortcuts
and preferentially control those.

9.3.5 Epidemic Spreading on Scale-Free Networks

Networks of sexual relations (in the context of STDs) have been claimed to be scale-free.
A few highly promiscuous individuals act as hub nodes, and may play a crucial role in
spreading sexually transmitted diseases.

If the contact structure of a disease is a network with an inhomogeneous degree dis-
tribution, then the condition for occurrence of an epidemic is given by:

R0 =
βN

γ
>
〈k〉
〈k2〉

where R0: basic reproduction number representing the epidemic threshold. For a scale-
free network having degree exponent 2 < α ≤ 3, 〈k2〉 → ∞. This implies that there
is no epidemic threshold. This makes scale-free networks especially vulnerable because
Even diseases with extremely low transmission probabilities are likely to cause a major
outbreak involving a signficant fraction of population.
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9.4 Ecological Networks

An ecological network is a representation of the biotic interactions in an ecosystem, in
which species (nodes) are connected by pairwise interactions (links). These interactions
can be trophic or symbiotic. Ecological networks are used to describe and compare the
structures of real ecosystems, while network models are used to investigate the effects of
network structure on properties such as ecosystem stability.

9.4.1 Population Dynamics

Consider a system consisting of a single species. The population dynamics of this system
taking into account intra-species competition can be represented as:

dx

dt
= rx

[
1− x

K

]
where r is the Growth rate, and K is the carrying capacity, which is the maximum popu-
tation that can be supported by the system. At equilibrium, for positive r, x∗ = K, and
for negative r, x∗ = 0.

Consider mutual competition between the same species, using the same resources.
This interaction can be modelled as

dx

dt
= rx

[
1− x

K
− x′

K

]
However, the interactions between two species can be of many kinds (and not just com-
petition for the same resources). The trophic relations between two species can be of the
following forms:

• Prey-Predator

• Host-Parasite

• Plant-Herbivore

9.4.1.1 Two-Species Resource Consumer Dynamics

The two species resource-consumer dynamics can in general be modeled as

dx

dt
= φ(x)− g(x, y)y

dy

dt
= n(x, y)y − yd

Here, x and y refer to the number of prey and predators respectively, φ(x): growth of prey
in absence of predators, g(x, y): capture rate of prey per predator, n(x, y): rate at which
captured prey is converted into predator population increase – assumed to be εg(x, y)
where ε is efficiency, and d: rate at which predators die in absence of prey.

Different choices of the functional forms in the above equations give different models.
We will study the Lotka-Volterra model in this context.
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9.4.1.2 The Lotka-Volterra Model

The Lotka–Volterra equations, also known as the predator–prey equations, are used to
describe the dynamics of biological systems in which two species interact, one a predator
and one its prey. They evolve in time according to the pair of equations:

dx

dt
= rx− kxyxy

dy

dt
= kxyxy − yd

Consider the example of a two-species system of fishes, where x and y represent prey and
predator fishes respectively. If the effect of fishing were to be additionally considered for
modeling the population dynamics, then the equations would be as follows:

dx

dt
= (r − a)x− kxyxy

dy

dt
= kxyxy − (d+ b)y

The equilibrium populations would then be x∗ = (d+ b)/kxy, and y∗ = (r− a)/kxy. Note
that in the absence of fishing, a = 0 and b = 0.

The Lotka-Volterra model suffers from chaos if it is used to model a system with more
than 2 species.

9.4.1.3 Food Webs

So far, we have only considered interaction between 2 species. Going beyond 3 species
opens up an entire world of dynamical possibilities, and we enter the realm of ecological
(interaction) networks. Of these, food webs form a special case, comprising links
representing trophic relations, i.e. only predator-prey interactions. While many different
kinds of food webs are found in the real world (such as rainforests, lakes, deserts, etc.), it is
possible to understand the general features of such networks using theoretical approaches.

9.4.2 Robustness of Complex Systems

Despite being complex systems, biological networks are robust, and stable against per-
turbations (such as infections, random fluctuations, targeted attacks). This is a vital
property of complex networks. It is therefore important to understand how dynamics
interacts with complex network structure to impart robustness to natural systems, and
how such robust systems emerge.
If the complexity of a system were to be increased (by increasing the number of nodes, the
density of connections, and the strenght of interaction between nodes), then theoretical
results imply that stability of the system decreases. However, experimental observations
sometimes show the opposite. It is important to note that most results were obtained
assuming networks are random and at equilibrium (both at the level of the nodes as well
as the network). There are two contrasting views in the literature regarding the relation
between the diversity of a network and its stability.
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9.4.2.1 The Empiricists’ View

This view suggests that diversity is essential for maintaining network stability. Charles
Elton proposed in 1958 that simple ecosystems are less stable than complex ones, on the
basis of the field observations such as violent fluctuations in population density are more
common in simpler communities, simple communities are more likely to experience species
extinctions etc.

9.4.2.2 The Theorists’ View

Despite the above field observations, the view was challenged by experiments on the sta-
bility of random networks by Garnder and Ashby (1970), and on the analysis of randomly
constructed ecological networks by May (1972). These networks pointed to a contra-
dictory view, stability decreases as network size, connectivity and interaction strength
increases. In other words, increasing diversity leads to network instability.

The contradictory views laid the basis for the Stability vs. Diversity debate in
ecology. Experiments conducted have challenged the theorists’ views.

Common garden experiments examine the response of population and community
level biomass to environmental perturbation. The outcome of the experiments is that
diverse systems are more productive, as the total biomass produced increases with the
number of species. With high diversity, the system is also more resistant, although there
is no effect on population variability.

Bottle experiments examine network stability with varying biodiversity. Results
suggest that with increasing biodiversity, the network is more stable, such as shown in
the following figure.

Even though experiments suggest that high diversity communites are more productive
than low diversity ones, it is still unclear how these results scale to real communities.



72 CHAPTER 9. NETWORK DYNAMICS

9.4.2.3 Mathematical Formulation - Theorists’ View

Consider a simple community of one predator and one prey. We can then have the
following rate equations

f1 =
dX

dt
= X(a− bY )

f2 =
dY

dt
= Y (−d+ cX)

Taylor expansion around the equilibrium yields the following Jacobian matrix, also
called the ”community matrix”.

J =

[
a −bd/c

ac/b −d

]
Such a system is stable if the largest real component of the eigenvalues, that is

Re(λmax) < 0.

Robert May (1972) constructed randomly generated matrices representing interaction
strenght in a network of N nodes whose isolated nodes are stable (Jii = −1). He then
obtained the eigenvalues λ, and using the criterion that if λmax > 0, then the system is
unstable, came to the observation that stability decreases as network size, connectivity
and interaction strength increases.

The reasoning behind considering the network to be stable when the largest real com-
ponent of the eigenvalues is less than 0 is as given here. Consider a N -dimensional vector
x, which represents the state of the network with N nodes. That is, x = (x1, x2, · · · , xN),
where xi is the state of the ith node. The time evolution of x is given by a set of equations
(eg. such as the Lotka-Volterra model),

dxi
dt

= fi(x)

Now consider a fixed point equilibrium in the network state given by x0 = (x01, x
0
2, · · · , x0N),

such that f(x0) = 0. Now consider the effect of introducing a deviation δx at the equi-
librium x0, to measure the local stability of the equilibrium point.

d(δx)

dt
= f(x0 + δx)

= f(x0) + δx
df

dt

∣∣∣∣
x0

+O(δx2)

= 0 + δx
df

dt

∣∣∣∣
x0

= λδx

=⇒ δx(t) = δx(0)eλt

Thus we see that the equilibrium point is locally stable if λ < 0, and unstable if λ > 0.
But, what is the probability that for a network, λmax < 0? Firstly, we need that each
node is independently stable, that is, all the diagonal elements of J < 0 (choose Jii = −1.
Let J = B− I, where B is a matrix with diagonal elements 0 and I is the N ×N identity
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matrix. For matrix, what is the probability that λBmax < 1?

To answer this question, we apply random matrix theory. We assume that B has no
particular structure, i.e. B is a random matrix. Also, we assume that B has connectance
C, i.e Bij = 0 with probability 1 − C. The non-zero elements are independent random
variables from a (0, σ2) Normal distribution. As the value of N grows larger, we can apply
Wigner’s theorem for random matrices.

Using this theorem, we have that the largest real part of the eigenvalues of B is
λBmax =

√
NCσ2. Thus we get that, for large N , the probability of stability is 0, when√

NCσ2 > 1, while the system is almost surely stable if
√
NCσ2 < 1.

9.4.2.4 Other Measures of Stability

Apart from the measures as outlined above, we can also measure stability in terms of the
following,

• Global Stability: A system is stable if it returns to equilibrium after any pertur-
bation (large or small).

• Resistance: The ability of a community to resist change in the face of a potentially
perturbing force.

• Resilience: The ability of a community to recover to normal levels of function after
disturbance.

• Variability: The variation in population or community densitites over time. It is
usually measure as the coefficient of variation (mean/variance).

9.4.3 Network Structure and Stability

In nature, networks are not random, and many have certain structural patterns eg. small
world networks, scale free networks. Initial work done by Montoya and Sole (2001) re-
garding the network analysis of some food webs estimated that these networks have a
high clustering coefficient, which is a characteristic of a small-world model. This view
was however later challenged by Dunne et. al. (2002), who proposed that most food
webs do not display typical small world topology. According to Sinha (2005), small-world
topology does not affect the stability of a network.

Scale-free networks are generated using the Barabási-Albert Model. Montoya and Sole
(2006) discovered that the Kyoto plant-pollinator web followed a power-law distribution.
A simple Barabási-Albert network does not exhibit any correlations between the degrees
of connected nodes, i.e. The probability a link connects nodes of degree k and k′ is

p(k, k′) =
kpkk

′pk′
<k>2 , (degree-uncorrelated network). Most real-world networks though ex-

hibit degree correlations measured using Assortativity,

Assortativity, r =
1
L

(
∑L

i=1 jiki)− ( 1
L

(
∑L

i=1
1
2
(ji + ki)))

2

1
L

(
∑L

i=1
1
2
(j2i + k2i )− ( 1

L
(
∑L

i=1
1
2
(ji + ki))))2
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Most biological networks are disassortiative in nature, that is, have r < 0, whereas social
networks are assortative, and have r > 0. Brede and Sinha (2005) proposed that degree
correlation infact does affect the stability of a network. Disassortative networks are rel-
atively more stable than assortative networks. However, networks become more unstable
as system size increases.

9.4.4 Modular Networks

Modular networks are characterized by dense connections within certain sub-networks
(modules) and relatively few connections between different modules. Pimm proposed that
such compartments or modules correspond to different habitats in the system. Later, May
proposed that compartmentalization in ecosystems contributes towards their stability.

Figure 9.9: Chesapake Bay Foodweb

Consider the linear stability of a random network with a modular structure. As random
networks are divided into more modules, they become more unstable. So, the suggestion
that modularity imparts robustness is not entirely true. But still, most of the real-world
networks that one observes have a modular structure. A clue to this puzzle is that many of
these modular networks also possess multiple hubs, i.e. nodes having high degree relative
to other nodes.

RK Pan (2007) noticed that real networks optimize between several constraints,

• Minimizing link cost, i.e Total number of links (L)

• Minimizing average path length, l

• Minimizing instability, λmax

Minimizing link cost and average path length naturally yields a star-shaped network
with a single hub. However, such networks are unstable, as, for the start network,
λmax

√
N . The simple star-shaped network thus obtained is unstable. In order to satisfy

all three constraints, the solution lies in making the network more modular.
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As star shaped networks are divided into more modules, they become more stable, as
shown in the figure. As the number of modules increases, the instability decreases, as
λmax

√
N/m, where m stands for the number of modules in the network. This is also

shown explicitly by network optimization. For this, we fix the link cost to a minimum
value (L = N − 1), and then minimize the following energy function E(α) = αl + (1 −
α)λmax, where α stands for the relative importance of path length constraint over stability
constraint.

However, we note that perfect star-shaped networks are unrealistic. The link cost
constraint is therefore relaxed, i.e. L > N − 1. This has the effect of introducing random
links between non-hub nodes, and produces clustered -stars. As L increases, additional
links occur between modules, and not within modules. In order to achieve an optimal
network, we prefer inter-modular links between non-hub nodes, as this has the effect of
decreasing l, while not increasing instability of the network.

Figure 9.10: Relative stabilities of modular star-shaped networks with (A) no relaxed link
cost constraint, (B) relaxed link cost with inter modular links between hub nodes, (C)
relaxed link costs with intermodular links between non-hub nodes

Modular networks thus are stable with regard to the dynamical instability criterion
for network robustness. In case of stability against structural perturbations, such as
random or targeted removal of nodes, we know that scale-free networks are robust against
random removal, and random networks are robust against targeted removal. In the limit
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of extremely small L, we discover that optimal modular networks are actually equivalent
to networks with bimodal degree distributions, and thus are robust with regard to both
random as well as targeted removal of nodes.

Figure 9.11: Robust modular star-networks in the limit of extremely small L

Introducing certain structures in the network topology does not change the relation
between the complexity of a network and its resulting instablility.

9.4.5 Network Evolution

Networks in the real world do not occur fully formed, but gradually evolve over time. Ex-
amples of such networks are predator adaptation or prey switching, changing of trophic
links between species due to changes in relative densities etc. The literature presented
above did not yet consider the dynamics of networks. Now we present models which try
to model such evolving networks, and then discuss their stability.

Consider the case of assembling ecological communities. Ecological networks are grad-
ually organized over time by the community assembly rules, which decide which species
and co-exist in a system, and the sequence in which species are able to colonize a habitat.
The WSB Network Assembly Model gives an algorithm to construct such ecological
networks.

9.4.5.1 Wilmers-Sinha-Brede (WSB) Network Assembly Model

The model outlines the following algorithm:

• Start with one node.

• Add another node with random number of links, and randomly chosen interaction
strengths, aij.

• Check stability of the resultant network:

– If unstable, remove a node at random, and analyze stability again.
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– If stable, add another node.

We see that the networks generated using this model initially grow in size monotoni-
cally, but later settle into a pattern of growth spurts and collapses. A surprising outcome
results, for the evolved networks, the more the complexity, the more the robust the net-
works. Larger networks thus obtained are less variable more robust), and more resilient.
Also, such large networks have a smaller chance of a large magnitude collapse. May pro-
posed that communities with overall weaker interactions support a larger mean number
of species, in other words, weak links are stabilizing.
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