Internal Sorting by Comparison
Problem Specification

Consider the collection of data related to the students of a particular class. Each data consists of

- Roll Number: `char rollNo[9]`
- Name: `char name[50]`
- cgpa: `double cgpa`

It is necessary to prepare the merit list of the students.
<table>
<thead>
<tr>
<th>Roll No.</th>
<th>Name</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>02ZO2001</td>
<td>V. Bansal</td>
<td>7.50</td>
</tr>
<tr>
<td>02ZO2002</td>
<td>P. K. Singh</td>
<td>8.00</td>
</tr>
<tr>
<td>02ZO2003</td>
<td>Imtiaz Ali</td>
<td>8.50</td>
</tr>
<tr>
<td>02ZO2004</td>
<td>S. P. Sengupta</td>
<td>8.25</td>
</tr>
<tr>
<td>02ZO2005</td>
<td>P. Baluchandran</td>
<td>9.25</td>
</tr>
<tr>
<td>02ZO2006</td>
<td>V. K. R. V. Rao</td>
<td>9.00</td>
</tr>
<tr>
<td>02ZO2007</td>
<td>L. P. Yadav</td>
<td>6.50</td>
</tr>
<tr>
<td>02ZO2008</td>
<td>A. Maria Watson</td>
<td>8.00</td>
</tr>
<tr>
<td>02ZO2009</td>
<td>S. V. Reddy</td>
<td>7.00</td>
</tr>
<tr>
<td>02ZO2010</td>
<td>D. K. Sarlekar</td>
<td>7.50</td>
</tr>
</tbody>
</table>
The merit list should be sorted on cgpa of a student.
<table>
<thead>
<tr>
<th>Roll No.</th>
<th>Name</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>02ZO2005</td>
<td>P. Baluchandran</td>
<td>9.25</td>
</tr>
<tr>
<td>02ZO2006</td>
<td>V. K. R. V. Rao</td>
<td>9.00</td>
</tr>
<tr>
<td>02ZO2003</td>
<td>Imtiaz Ali</td>
<td>8.50</td>
</tr>
<tr>
<td>02ZO2004</td>
<td>S. P. Sengupta</td>
<td>8.25</td>
</tr>
<tr>
<td>02ZO2002</td>
<td>P. K. Singh</td>
<td>8.00</td>
</tr>
<tr>
<td>02ZO2008</td>
<td>A. Maria Watson</td>
<td>8.00</td>
</tr>
<tr>
<td>02ZO2001</td>
<td>V. Bansal</td>
<td>7.50</td>
</tr>
<tr>
<td>02ZO2010</td>
<td>D. K. Sarlekar</td>
<td>7.50</td>
</tr>
<tr>
<td>02ZO2009</td>
<td>S. V. Reddy</td>
<td>7.00</td>
</tr>
<tr>
<td>02ZO2007</td>
<td>L. P. Yadav</td>
<td>6.50</td>
</tr>
</tbody>
</table>
Problem Abstraction

We only consider the cgpa field for discussion of sorting algorithms.

<table>
<thead>
<tr>
<th>Unsorted Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sorted Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.25</td>
</tr>
</tbody>
</table>
Simple Sorting Algorithms

- Selection Sort
- Insertion Sort
- Bubble Sort
Selection Sort

The data is stored in an 1-D array and we sort them in non-ascending order. Let the number of data be n

```c
for i ← 0 to n − 2 do
    maxIndex ← indexOfMax({a[i], ..., a[n-1]})
    a[i] ↔ a[maxIndex]  # Exchange
endFor
```
Unsorted Data

<table>
<thead>
<tr>
<th>7.5</th>
<th>8.0</th>
<th>6.5</th>
<th>9.25</th>
<th>7.5</th>
<th>8.5</th>
<th>9.0</th>
<th>7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Index of Max

After i=0

<table>
<thead>
<tr>
<th>9.25</th>
<th>8.0</th>
<th>6.5</th>
<th>7.5</th>
<th>7.5</th>
<th>8.5</th>
<th>9.0</th>
<th>7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Index of Max

After i=1

<table>
<thead>
<tr>
<th>9.25</th>
<th>9.0</th>
<th>6.5</th>
<th>7.5</th>
<th>7.5</th>
<th>8.5</th>
<th>8.0</th>
<th>7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Index of Max

After i=2

<table>
<thead>
<tr>
<th>9.25</th>
<th>9.0</th>
<th>8.5</th>
<th>7.5</th>
<th>7.5</th>
<th>6.5</th>
<th>8.0</th>
<th>7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Index of Max
C Program
int indexOfMax(double cgpa[], int low, int high) {
 int max;

 if (low == high) return low;
 max = indexOfMax(cgpa, low + 1, high);
 if (cgpa[low] > cgpa[max]) return low;
 return max;
} // selSort.c

#define EXCH(X,Y,Z) ((Z)=(X), (X)=(Y), (Y)=(Z))

void selectionSort(double cgpa[], int noOfStdnt) {
 int i;

 for (i = 0; i < noOfStdnt - 1; ++i) {
 int max = indexOfMax(cgpa, i, noOfStdnt - 1);
double temp;
EXCH(cgpa[i], cgpa[max], temp);
}
} // selSort.c
Measure of Goodness of an Algorithm

- Correctness of the algorithm.
- Increase of execution time with the increase in the size of input.
- Increase of the requirement of extra space (other than the space required by the input data) with the increase in the size of input.
- Difficulty in coding the algorithm, ···
The execution time of a program (algorithm) depends on many factors e.g. the machine parameters (clock speed, instruction set, memory access time etc.), the code generated by the compiler, other processes sharing time on the OS, data set, data structure and encoding of the algorithm etc.
Execution Time Abstraction

It is necessary to get an abstract view of the execution time, to compare different algorithms, that essentially depends on the algorithm and the data structure.
Execution of `selectionSort()`

If there are n data, the for-loop in the function `selectionSort()`, is executed $(n - 1)$ times ($[i : 0 \cdots (n - 2)]$), so the number of assignments, array access, comparison and call to `indexOfMax()` are all approximately proportional to the data count, n^a.

\[a \text{It is difficult to get the exact count of these operations from the high-level coding of the algorithm.} \]
Execution of \texttt{indexOfMax()}

For each value of \(i\) in the for-loop of \texttt{selectionSort()} there is a call to \texttt{indexOfMax()} (\(\text{low} \leftarrow i\))

- The call generates a sequence of \(n - i\) recursive calls (including the first one).
- The total number of comparisons for each \(i\) inside \texttt{indexOfMax()}, are \(2(n - i) - 1\). There are also \((n - i - 1)\) assignments and \(2(n - i - 1)\) array access.
Execution Time

- The total number of function calls is
 \[\sum_{i=0}^{n-2} (n - i) = \frac{(n + 2)(n - 1)}{2}. \]

- The total number of comparisons is
 \[n + \sum_{i=0}^{n-2} 2(n - i) - 1 = n^2 + n - 1. \]

- The total number of assignments is
 \[k(n-1) + \sum_{i=0}^{n-2} (n-i-1) = \frac{n(n-1)}{2} + k(n-1). \]

- The total number of array access is
 \[\sum_{i=0}^{n-2} 2(n - i - 1) = n(n - 1). \]
Different operations have different costs, that makes the execution time a complex function of n. But for a large value of n (data count), the number of each of these operations is approximately proportional to n^2.
If we assume identical costs for each of these operations (abstraction), the running time of selection sort is approximately proportional to n^{2a}.

This roughly means that the running time of selection sort algorithm will be four times if the data count is doubled.

\(^a n\) is the number of data to be sorted.
Time Complexity

We say that the running time or the time complexity of selection sort is of order \(n^2 \), \(\Theta(n^2) \). We shall define this notion precisely.
In the recursive implementation of `indexOfMax()`, the depth of nested calls may go upto n. Considering the space for the local variables e.g. `max`, the extra space requirement is proportional to n.
Space Complexity

The extra space requirement or the space complexity of this program is of order n, $\Theta(n)$. We can reduce the space requirement using a non-recursive function.
Selection Sort without Recursion
#define EXCH(X,Y,Z) ((Z)=(X), (X)=(Y), (Y)=(Z))

void selectionSort(double cgpa[], int noOfStdnt) {
 int i ;

 for(i = 0; i < noOfStdnt - 1; ++i) {
 int max, j ;
 double temp ;

 temp = cgpa[i] ;
 max = i ;
 for(j = i+1; j < noOfStdnt; ++j)
 if(cgpa[j] > temp) {
 temp = cgpa[j] ;
 max = j ;
 }
 }
}
EXCH(cgpa[i], cgpa[max], temp);

} // selSort1.c
Space Complexity

In the non-recursive version, the volume of extra space does not depend on the number of data elements. There are four (4) local variables and two (2) parameters. The space requirement is a constant and is expressed as $\Theta(1)$ ($n^0 = 1$).
Note

We shall introduce the notion of upper bound \((O)\), lower bound \((\Omega)\) and order \((\Theta)\) of non-decreasing positive real-valued functions. These notations will be useful to talk about the running time and space usages of algorithms.
Consider two functions \(f, g : \mathbb{N} \rightarrow \mathbb{R}^+ \). We say
\(f(n) \) is \(O(g(n)) \) (\(f(n) \in O(g(n)) \) or
\(f(n) = O(g(n)) \)), if there are two positive
constants \(c \) and \(n_0 \) such that
\(0 \leq f(n) \leq cg(n) \),
for all \(n \geq n_0 \).

\(g(n) \) is an upper bound of \(f(n) \).
Ω: Asymptotic Lower Bound

Consider two functions $f, g : \mathbb{N} \rightarrow \mathbb{R}^+$. We say $f(n)$ is $\Omega(g(n))$ ($f(n) \in \Omega(g(n))$ or $f(n) = \Omega(g(n))$), if there are two positive constants c and n_0 such that $0 \leq cg(n) \leq f(n)$, for all $n \geq n_0$.

$g(n)$ is a lower bound of $f(n)$.

Examples

- \(n^2 + n + 5 = O(n^2) \): It is easy to verify that
 \[2n^2 \geq n^2 + n + 5 \]
 for all \(n \geq 3 \) i.e. \(c = 2 \) and \(n_0 = 3 \).

- \(n^2 + n + 5 \not= O(n) \) and

- \(n^2 + n + 5 = O(n^3), O(n^4), \ldots \).
Examples

• \(n^2 + n + 5 = \Omega(n^2) \): It is easy to verify that
 \(\frac{n^2}{2} < n^2 + n + 5 \) for all \(n \) i.e. \(c = 0.5 \) and
 \(n_0 = 0 \).

• \(n^2 + n + 5 = \Omega(n), \Omega(n \log n), \Omega(\log n) \) and

• \(n^2 + n + 5 \neq \Omega(n^3), \Omega(n^4), \ldots \).
Consider two functions $f, g : \mathbb{N} \rightarrow \mathbb{R}^+$. We say $f(n) = \Theta(g(n))$, if there are three positive constants c_1, c_2 and n_0 such that

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n),$$

for all $n \geq n_0$.

$g(n)$ is an asymptotically tight bound of $f(n)$ or $g(n)$ is of order $f(n)$.

$f(n) = \Theta(g(n))$ is equivalent to $f(n) = O(g(n))$ and $g(n) = O(f(n))$.
\[f(n) \leq c_1 g(n) \quad \text{and} \quad c_0 g(n) \leq f(n) \]

Diagram showing the relationship between \(f(n) \), \(c_1 g(n) \), and \(c_0 g(n) \) with a horizontal line at \(n_0 \) on the \(x \)-axis.
Examples

- \(g(n) = n^2 + n + 5 = \Theta(n^2) \), take \(c_1 = \frac{1}{3}, \ c_2 = 1 \) and \(n_0 = 2 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{3} g(n))</td>
<td>(\frac{5}{3})</td>
<td>(\frac{7}{3})</td>
<td>(\frac{11}{3})</td>
<td>(\frac{17}{3})</td>
<td>...</td>
</tr>
<tr>
<td>(n^2)</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>...</td>
</tr>
</tbody>
</table>

- But \(n^2 + n + 5 \neq \Theta(n^3), \Theta(n), \ldots \).
Selection Sort

Running time of selection sort is $\Theta(n^2)$ and the space requirement is $\Theta(1)$ (no-recursive), where n is the number of data to sort.
Note

Let \(n \) be the size of the input. The worst case running time of an algorithm is

- \(\Theta(n) \) implies that it takes almost double the time if the input size is doubled;
- \(\Theta(n^2) \) implies that it takes almost four times the time if the input is doubled;
- \(\Theta(\log n) \) implies that it takes a constant amount of extra time if the input is doubled;
Insertion Sort
Unsorted Data

1st Step

2nd Step

After 2nd Step
Insertion Sort Algorithm

for i ← 1 to noOfStdnt − 1 do
 temp ← cgpa[i]
 for j ← i-1 downto 0 do
 if cgpa[j] < temp
 cgpa[j+1] ← cgpa[j]
 else
 go out of loop
 endFor
cgpa[j+1] ← temp
endFor
void insertionSort(double cgpa[], int noOfStdnt)
{
 int i, j;

 for(i=1; i < noOfStdnt; ++i) {
 double temp = cgpa[i] ;
 for(j = i-1; j >= 0; --j) {
 if(cgpa[j]<temp) cgpa[j+1]=cgpa[j];
 else break ;
 }
 cgpa[j+1] = temp ;
 }
} // insertionSort.c

Lect 19

Goutam Biswas
Execution Time

Let n be the number of data. The outer for-loop will always be executed $n - 1$ times. The number of times the inner for-loop is executed depends on data. It is entered at least once but the maximum number of execution may be i.
If for most of the values of i, $0 \leq i < n$, the inner loop is executed near the minimum value (for an almost sorted data), the execution time will be almost proportional to n i.e. linear in n.
Worst Case Execution Time

But in the worst case, The inner for-loop will be executed

$$\sum_{i=1}^{n-1} i = \frac{n(n - 1)}{2} = \Theta(n^2)$$

times. So the running time of insertion sort is $O(n^2)$, the worst case running is $\Theta(n^2)$, the best case running time is $\Theta(n)$.
Extra Space for Computation

The extra space required for the computation of insertion sort does not depend on number of data. It is $\Theta(1)$ (so it is also $O(1)$ and $\Omega(1)$).
Bubble Sort
\begin{align*}
\text{\textbf{i} = 0} & \quad 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\text{\textbf{j} = 7} & \quad 53 & 22 & 49 & 15 & 21 & 82 & 37 & 16 \\ & \quad \text{no-exchange} \\
\text{\textbf{j} = 6} & \quad 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & \quad \text{no-exchange} \\
\text{\textbf{j} = 5} & \quad 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & \quad \text{exchange} \\
\text{\textbf{j} = 4} & \quad 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & \quad \text{exchange} \\
\text{\textbf{j} = 3} & \quad 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & \quad \text{exchange} \\
\text{\textbf{j} = 2} & \quad 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & \quad \text{exchange} \\
\text{\textbf{j} = 1} & \quad 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & \quad \text{exchange} \\
& \quad 82 & 53 & 22 & 49 & 15 & 21 & 37 & 16
\end{align*}
Bubble Sort Algorithm

for i ← 0 to noOfStdnt − 2 do
 exchange = NO
 for j ← noOfStdnt − 1 downto i + 1 do
 if (cgpa[j-1] < cgpa[j])
 cgpa[j-1] ↔ cgpa[j] # Exchange
 exchange = YES
 endFor
 if (exchange == NO) break
endFor
C Program
#define EXCHANGE 0
#define NOEXCHANGE 1
#define EXCH(X,Y,Z) ((Z)=(X), (X)=(Y), (Y)=(Z))

void bubbleSort(double cgpa[], int noOfStdnt) {
 int i, j, exchange, temp;

 for(i=0; i < noOfStdnt - 1; ++i) {
 exchange = NOEXCHANGE;
 for(j = noOfStdnt - 1; j > i; --j)
 if(cgpa[j-1] < cgpa[j]) {
 EXCH(cgpa[j-1], cgpa[j], temp);
 exchange = EXCHANGE;
 }
 if(exchange) break;
 }
}
} // bubbleSort.c
The number of times the outer for-loop is executed depends on the input data, as there is a conditional `break`. If the data is sorted in the desired order, there is no exchange, and in the best case the outer loop is executed only once. This makes the best running time of bubble sort approximately proportional to n.
Execution Time and Space

But in the worst case the outer loop is executed \(n - 1 \) times. The inner loop is executed \((n - 1) - i \) times for every value of \(i \). So in the worst case, the total number of times the inner loop is executed is

\[
\sum_{i=0}^{n-1} (n - 1) - i = \frac{n(n - 1)}{2} = \Theta(n^2)
\]

times.
Worst Case Complexity

- The running time of bubble sort (worst case time complexity) is $O(n^2)$ (quadratic in n).
- The extra storage requirement does not depend on the size of data and the space complexity is $\Theta(1)$.